Publications

Climate Science and Impacts

To search for phrases, use quotation marks: "climate change smith"
To search for combinations of words, separate them by "AND" or "+": climate + change + Smith
If you don't use either of the above, the search will run on ANY keyword.

    <li><a href='#' data-type="all" class="active">All types</a></li><li><a href='#' data-type="book">Book</a></li><li><a href='#' data-type="chapter">Chapter</a></li><li><a href='#' data-type="conference-paper">Conference paper</a></li><li><a href='#' data-type="dataset">Dataset</a></li><li><a href='#' data-type="journal-article">Journal article</a></li><li><a href='#' data-type="other">Other</a></li><li><a href='#' data-type="report">Report</a></li>
    <li><a href='#' class='active' data-year='all'>All dates</a></li><li><a href='#' data-year="2019">2019</a></li><li><a href='#' data-year="2018">2018</a></li><li><a href='#' data-year="2017">2017</a></li><li><a href='#' data-year="2016">2016</a></li><li><a href='#' data-year="2015">2015</a></li><li><a href='#' data-year="2014">2014</a></li><li><a href='#' data-year="2013">2013</a></li><li><a href='#' data-year="2012">2012 &amp; previous</a></li>

2019

Hill DJ (2019) Climate change and the rise of the central Asian Silk Roads. <i>In:</i> Yang LE; Bork H-R; Fang X; Mischke S eds. <i>Socio-Environmental Dynamics along the Historical Silk Road</i>, Springer, Cham, pp. 247-259. <a href="http://dx.doi.org/10.1007/978-3-030-00728-7_12"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131262/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Asseng S; Martre P; Maiorano A; Rötter RP; O’Leary GJ; Fitzgerald GJ; Girousse C; Motzo R; Giunta F; Babar MA (2019) Climate change impact and adaptation for wheat protein. <i>Global Change Biology</i>, <b>25</b> (1), pp. 155-173. <a href="http://dx.doi.org/10.1111/gcb.14481"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138634/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Bednarz EM; Maycock AC; Telford PJ; Braesicke P; Abraham NL; Pyle JA (2019) Simulating the atmospheric response to the 11-year solar cycle forcing with the UM-UKCA model: the role of detection method and natural variability. <i>Atmospheric Chemistry and Physics</i>, <b>19</b> (7), pp. 5209-5233. <a href="http://dx.doi.org/10.5194/acp-19-5209-2019"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/139540/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Cookson E; Hill DJ; Lawrence D (2019) Impacts of long term climate change during the collapse of the Akkadian Empire. <i>Journal of Archaeological Science</i>, <b>106</b> , pp. 1-9. <a href="http://dx.doi.org/10.1016/j.jas.2019.03.009"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/145596/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dentith JE; Ivanovic RF; Gregoire LJ; Tindall JC; Smith RS (2019) Ocean circulation drifts in multi-millennial climate simulations: the role of salinity corrections and climate feedbacks. <i>Climate Dynamics</i>, <b>52</b> (3-4), pp. 1761-1781. <a href="http://dx.doi.org/10.1007/s00382-018-4243-y"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/130530/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Galdos MV; Pires LF; Cooper HV; Calonego JC; Rosolem CA; Mooney SJ (2019) Assessing the long-term effects of zero-tillage on the macroporosity of Brazilian soils using X-ray Computed Tomography. <i>Geoderma</i>, <b>337</b> , pp. 1126-1135. <a href="http://dx.doi.org/10.1016/j.geoderma.2018.11.031"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/142306/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ghosh S; Arvind DG; Dobbie S (2019) Evaluation of microclimates and assessment of thermal comfort of Panthera leo in the Masai Mara National Reserve, Kenya. <i>International Journal of Biometeorology</i>, <b>63</b> (3), pp. 269-279. <a href="http://dx.doi.org/10.1007/s00484-018-01660-3"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/141615/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Grise KM; Davis SM; Simpson IR; Waugh DW; Fu Q; Allen RJ; Rosenlof KH; Ummenhofer CC; Karnauskas KB; Maycock AC (2019) Recent Tropical Expansion: Natural Variability or Forced Response?. <i>Journal of Climate</i>, <b>32</b> (5), pp. 1551-1571. <a href="http://dx.doi.org/10.1175/JCLI-D-18-0444.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/140243/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Jones MD; Abu-Jaber N; AlShdaifat A; Baird D; Cook BI; Cuthbert MO; Dean JR; Djamali M; Eastwood W; Fleitmann D (2019) 20,000 years of societal vulnerability and adaptation to climate change in southwest Asia. <i>Wiley Interdisciplinary Reviews: Water</i>, <b>6</b> (2), e1330. <a href="http://dx.doi.org/10.1002/wat2.1330"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138621/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Kudzotsa I; Dobbie JS; Phillips V (2019) Modeled aerosol-cloud indirect effects and processes based on an observed partially glaciated marine deep convective cloud case. <i>Atmospheric Environment</i>, <b>204</b> , pp. 12-21. <a href="http://dx.doi.org/10.1016/j.atmosenv.2019.02.010"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/142204/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Liu B; Martre P; Ewert F; Porter JR; Challinor AJ; Müller C; Ruane AC; Waha K; Thorburn PJ; Aggarwal PK (2019) Global wheat production with 1.5 and 2.0°C above pre‐industrial warming. <i>Global Change Biology</i>, <b>25</b> (4), pp. 1428-1444. <a href="http://dx.doi.org/10.1111/gcb.14542"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/140894/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Marshall L; Johnson JS; Mann GW; Lee L; Dhomse SS; Regayre L; Yoshioka M; Carslaw KS; Schmidt A (2019) Exploring How Eruption Source Parameters Affect Volcanic Radiative Forcing Using Statistical Emulation. <i>Journal of Geophysical Research: Atmospheres</i>, <b>124</b> (2), pp. 964-985. <a href="http://dx.doi.org/10.1029/2018JD028675"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/140583/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
McMillan M; Muir A; Shepherd A; Escolà R; Roca M; Aublanc J; Thibaut P; Restano M; Ambrozio A; Benveniste J (2019) Sentinel-3 Delay-Doppler altimetry over Antarctica. <i>Cryosphere</i>, <b>13</b> (2), pp. 709-722. <a href="http://dx.doi.org/10.5194/tc-13-709-2019"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/144893/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Mills BJW; Krause AJ; Scotese CR; Hill DJ; Shields GA; Lenton TM (2019) Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. <i>Gondwana Research</i>, <b>67</b> , pp. 172-186. <a href="http://dx.doi.org/10.1016/j.gr.2018.12.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/139828/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Prescott C; Haywood A; Dolan A; Hunter S; Tindall J (2019) Indian monsoon variability in response to orbital forcing during the late Pliocene. <i>Global and Planetary Change</i>, <b>173</b> , pp. 33-46. <a href="http://dx.doi.org/10.1016/j.gloplacha.2018.12.002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/140196/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Smith CJ; Forster PM; Allen M; Fuglestvedt J; Millar RJ; Rogelj J; Zickfeld K (2019) Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming. <i>Nature Communications</i>, <b>10</b> , 101. <a href="http://dx.doi.org/10.1038/s41467-018-07999-w"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/141110/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Voarintsoa NRG; Matero ISO; Railsback LB; Gregoire L; Tindall J; Sime L; Cheng H; Edwards RL; Brook GA; Kathayat G (2019) Investigating the 8.2 ka event in northwestern Madagascar: Insight from data–model comparisons. <i>Quaternary Science Reviews</i>, <b>204</b> , pp. 172-186. <a href="http://dx.doi.org/10.1016/j.quascirev.2018.11.030"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/139900/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Whitfield S; Beauchamp E; Boyd DS; Burslem D; Byg A; Colledge F; Cutler MEJ; Didena M; Dougill A; Foody G (2019) Exploring temporality in socio-ecological resilience through experiences of the 2015–16 El Niño across the Tropics. <i>Global Environmental Change</i>, <b>55</b> , pp. 1-14. <a href="http://dx.doi.org/10.1016/j.gloenvcha.2019.01.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/141085/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>

2018

Butler A; Charlton-Perez A; Domeisen DIV; Garfinkel C; Gerber EP; Hitchcock P; Karpechko AY; Maycock AC; Sigmond M; Simpson I (2018) Sub-Seasonal to Seasonal Prediction. <i>In:</i> Robertson A; Vitart F eds. <i>Sub-seasonal to Seasonal Prediction The Gap Between Weather and Climate Forecasting</i>, Elsevier, . <a href="http://dx.doi.org/10.1016/B978-0-12-811714-9.00011-5"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138255/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic R; Gregoire L; Wickert A (2018) <i>Climate model data presented in ’Climatic effect of Antarctic meltwater overwhelmed by concurrent Northern hemispheric melt’</i> . <a href="http://dx.doi.org/10.5518/395"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Maycock AC (2018) <i>11 year solar cycle ozone coefficients from CMIP6 ozone dataset presented in ?The representation of solar cycle signals in stratospheric ozone. Part II: Analysis of global models’</i> . <a href="http://dx.doi.org/10.5518/348"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Arnold SR; Lombardozzi D; Lamarque J-F; Richardson T; Emmons LK; Tilmes S; Sitch SA; Folberth G; Hollaway MJ; Val Martin M (2018) Simulated global climate response to tropospheric ozone-induced changes in plant transpiration. <i>Geophysical Research Letters</i>, <b>45</b> (23), pp. 13070-13079. <a href="http://dx.doi.org/10.1029/2018GL079938"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/139322/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Asfaw D; Black E; Brown M; Nicklin KJ; Otu-Larbi F; Pinnington E; Challinor A; Maidment R; Quaife T (2018) TAMSAT-ALERT v1: a new framework for agricultural decision support. <i>Geoscientific Model Development</i>, <b>11</b> (6), pp. 2353-2371. <a href="http://dx.doi.org/10.5194/gmd-11-2353-2018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132440/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Banerjee A; Maycock AC; Pyle JA (2018) Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century. <i>Atmospheric Chemistry and Physics</i>, <b>18</b> (4), pp. 2899-2911. <a href="http://dx.doi.org/10.5194/acp-18-2899-2018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/126019/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Beveridge L; Whitfield S; Challinor A (2018) Crop modelling: towards locally relevant and climate-informed adaptation. <i>Climatic Change</i>, <b>147</b> (3-4), pp. 475-489. <a href="http://dx.doi.org/10.1007/s10584-018-2160-z"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/127744/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Bougeois L; Dupont-Nivet G; de Rafélis M; Tindall JC; Proust J-N; Reichart G-J; de Nooijer LJ; Guo Z; Ormukov C (2018) Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters. <i>Earth and Planetary Science Letters</i>, <b>485</b> , pp. 99-110. <a href="http://dx.doi.org/10.1016/j.epsl.2017.12.036"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/136029/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Boyd JL; Riding JB; Pound MJ; De Schepper S; Ivanovic RF; Haywood AM; Wood SEL (2018) The relationship between Neogene dinoflagellate cysts and global climate dynamics. <i>Earth-Science Reviews</i>, <b>177</b> , pp. 366-385. <a href="http://dx.doi.org/10.1016/j.earscirev.2017.11.018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/125411/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Brown JL; Hill DJ; Dolan AM; Carnaval AC; Haywood AM (2018) PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. <i>Scientific data</i>, <b>5</b> , ARTN 180254. <a href="http://dx.doi.org/10.1038/sdata.2018.254"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138067/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Burke KD; Williams JW; Chandler MA; Haywood AM; Lunt DJ; Otto-Bliesner BL (2018) Pliocene and Eocene provide best analogs for near-future climates. <i>Proceedings of the National Academy of Sciences</i>, <b>115</b> (52), pp. 13288-13293. <a href="http://dx.doi.org/10.1073/pnas.1809600115"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138629/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Challinor AJ; Müller C; Asseng S; Deva C; Nicklin KJ; Wallach D; Vanuytrecht E; Whitfield S; Ramirez-Villegas J; Koehler A-K (2018) Improving the use of crop models for risk assessment and climate change adaptation. <i>Agricultural Systems</i>, <b>159</b> , pp. 296-306. <a href="http://dx.doi.org/10.1016/j.agsy.2017.07.010"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/119377/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Davis MR; Alves BJR; Karlen DL; Kline KL; Galdos M; Abulebdeh D (2018) Review of Soil Organic Carbon Measurement Protocols: A US and Brazil Comparison and Recommendation. <i>Sustainability</i>, <b>10</b> (1), ARTN 53. <a href="http://dx.doi.org/10.3390/su10010053"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/135375/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dolan AM; de Boer B; Bernales J; Hill DJ; Haywood AM (2018) High Climate Model Dependency of Pliocene Antarctic Ice-Sheet Predictions. <i>Nature Communications</i>, <b>9</b> , 2799. <a href="http://dx.doi.org/10.1038/s41467-018-05179-4"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131951/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Fadnavis S; Roy C; Chattopadhyay R; Sioris CE; Rap A; Müller R; Kumar KR; Krishnan R (2018) Transport of trace gases via eddy shedding from the Asian summer monsoon anticyclone and associated impacts on ozone heating rates. <i>Atmospheric Chemistry and Physics Discussions</i>, . <a href="http://dx.doi.org/10.5194/acp-2018-168"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/134986/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Fadnavis S; Roy C; Chattopadhyay R; Sioris CE; Rap A; Müller R; Kumar KR; Krishnan R (2018) Transport of trace gases via eddy shedding from the Asian summer monsoon anticyclone and associated impacts on ozone heating rates. <i>Atmospheric Chemistry and Physics</i>, <b>18</b> (15), pp. 11493-11506. <a href="http://dx.doi.org/10.5194/acp-18-11493-2018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/135186/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Foresta L; Gourmelen N; Weissgerber F; Nienow P; Williams JJ; Shepherd A; Drinkwater MR; Plummer S (2018) Heterogeneous and rapid ice loss over the Patagonian Ice Fields revealed by CryoSat-2 swath radar altimetry. <i>Remote Sensing of Environment</i>, <b>211</b> , pp. 441-455. <a href="http://dx.doi.org/10.1016/j.rse.2018.03.041"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/136653/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gandy N; Gregoire LJ; Ely JC; Clark CD; Hodgson DM; Lee V; Bradwell T; Ivanovic RF (2018) Marine ice sheet instability and ice shelf buttressing of the Minch Ice Stream, northwest Scotland. <i>The Cryosphere</i>, <b>12</b> (11), pp. 3635-3651. <a href="http://dx.doi.org/10.5194/tc-12-3635-2018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138482/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Goelzer H; Nowicki S; Edwards T; Beckley M; Abe-Ouchi A; Aschwanden A; Calov R; Gagliardini O; Gillet-Chaulet F; Golledge NR (2018) Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison. <i>The Cryosphere</i>, <b>12</b> (4), pp. 1433-1460. <a href="http://dx.doi.org/10.5194/tc-12-1433-2018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/136558/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gregoire LJ; Ivanovic RF; Maycock AC; Valdes PJ; Stevenson S (2018) Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate. <i>Climate Dynamics</i>, <b>51</b> (9-10), pp. 3797-3813. <a href="http://dx.doi.org/10.1007/s00382-018-4111-9"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/125427/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hall JLO; Newton RJ; Witts JD; Francis JE; Hunter SJ; Jamieson RA; Harper EM; Crame JA; Haywood AM (2018) High benthic methane flux in low sulfate oceans: Evidence from carbon isotopes in Late Cretaceous Antarctic bivalves. <i>Earth and Planetary Science Letters</i>, <b>497</b> , pp. 113-122. <a href="http://dx.doi.org/10.1016/j.epsl.2018.06.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132417/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hamilton DS; Hantson S; Scott CE; Kaplan JO; Pringle KJ; Nieradzik LP; Rap A; Folberth GA; Spracklen DV; Carslaw KS (2018) Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing. <i>Nature Communications</i>, <b>9</b> , 3182. <a href="http://dx.doi.org/10.1038/s41467-018-05592-9"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132963/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hawkings JR; Hatton JE; Hendry KR; De Souza GF; Wadham JL; Ivanovic R; Kohler TJ; Stibal M; Beaton A; Lamarche-Gagnon G (2018) The silicon cycle impacted by past ice sheets. <i>Nature Communications</i>, <b>9</b> (1), ARTN 3210. <a href="http://dx.doi.org/10.1038/s41467-018-05689-1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131955/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hogg AE; Shepherd A; Gilbert L; Muir A; Drinkwater MR (2018) Mapping Ice Sheet Grounding Lines With CryoSat-2. <i>Advances in Space Research</i>, <b>62</b> (6), pp. 1191-1202. <a href="http://dx.doi.org/10.1016/j.asr.2017.03.008"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/113989/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Holloway MD; Sime LC; Singarayer JS; Tindall JC; Valdes PJ (2018) Simulating the 128-ka Antarctic Climate Response to Northern Hemisphere Ice Sheet Melting Using the Isotope-Enabled HadCM3. <i>Geophysical Research Letters</i>, <b>45</b> (21), pp. 11921-11929. <a href="http://dx.doi.org/10.1029/2018GL079647"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/140055/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Iglesias-Suarez F; Kinnison DE; Rap A; Maycock AC; Wild O; Young PJ (2018) Key drivers of ozone change and its radiative forcing over the 21st century. <i>Atmospheric Chemistry and Physics</i>, <b>18</b> (9), pp. 6121-6139. <a href="http://dx.doi.org/10.5194/acp-18-6121-2018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/129081/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic RF; Gregoire LJ; Burke A; Wickert AD; Valdes PJ; Ng HC; Robinson LF; McManus JF; Mitrovica JX; Lee L (2018) Acceleration of Northern Ice Sheet Melt Induces AMOC Slowdown and Northern Cooling in Simulations of the Early Last Deglaciation. <i>Paleoceanography and Paleoclimatology</i>, <b>33</b> (7), pp. 807-824. <a href="http://dx.doi.org/10.1029/2017PA003308"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132788/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic RF; Gregoire LJ; Wickert AD; Burke A (2018) Climatic Effect of Antarctic Meltwater Overwhelmed by Concurrent Northern Hemispheric Melt. <i>Geophysical Research Letters</i>, <b>45</b> (11), pp. 5681-5689. <a href="http://dx.doi.org/10.1029/2018GL077623"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131663/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Kageyama M; Braconnot P; Harrison SP; Haywood AM; Jungclaus J; Otto-Bliesner BL; Peterschmitt J-Y; Abe-Ouchi A; Albani S; Bartlein PJ (2018) The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan. <i>Geoscientific Model Development</i>, <b>11</b> , pp. 1033-1057. <a href="http://dx.doi.org/10.5194/gmd-11-1033-2018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/103743/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Konrad H; Shepherd A; Gilbert L; Hogg AE; McMillan M; Muir A; Slater T (2018) Net retreat of Antarctic glacier grounding lines. <i>Nature Geoscience</i>, <b>11</b> , pp. 258-262. <a href="http://dx.doi.org/10.1038/s41561-018-0082-z"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/129218/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Kudzotsa I; Phillips VTJ; Dobbie S (2018) Effects of solid aerosols on partially glaciated clouds. <i>Quarterly Journal of the Royal Meteorological Society</i>, <b>144</b> (717), pp. 2634-2649. <a href="http://dx.doi.org/10.1002/qj.3376"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/133318/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Lemos A; Shepherd A; McMillan M; Hogg AE (2018) Seasonal Variations in the Flow of Land-Terminating Glaciers in Central-West Greenland Using Sentinel-1 Imagery. <i>Remote Sensing</i>, <b>10</b> (12), ARTN 1878. <a href="http://dx.doi.org/10.3390/rs10121878"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/139243/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Lemos A; Shepherd A; McMillan M; Hogg AE; Hatton E; Joughin I (2018) Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery. <i>The Cryosphere</i>, <b>12</b> (6), pp. 2087-2097. <a href="http://dx.doi.org/10.5194/tc-12-2087-2018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132496/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Liu L; Shawki D; Voulgarakis A; Kasoar M; Samset BH; Myhre G; Forster PM; Hodnebrog Ø; Sillmann J; Aalbergsjø SG (2018) A PDRMIP Multimodel study on the impacts of regional aerosol forcings on global and regional precipitation. <i>Journal of Climate</i>, <b>31</b> (11), pp. 4429-4447. <a href="http://dx.doi.org/10.1175/JCLI-D-17-0439.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131472/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Malmierca-Vallet I; Sime LC; Tindall JC; Capron E; Valdes PJ; Vinther BM; Holloway MD (2018) Simulating the Last Interglacial Greenland stable water isotope peak: The role of Arctic sea ice changes. <i>Quaternary Science Reviews</i>, <b>198</b> , pp. 1-14. <a href="http://dx.doi.org/10.1016/j.quascirev.2018.07.027"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/136028/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Marshall L; Schmidt A; Toohey M; Carslaw KS; Mann GW; Sigl M; Khodri M; Timmreck C; Zanchettin D; Ball W (2018) Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora. <i>Atmospheric Chemistry and Physics</i>, <b>18</b> (3), pp. 2307-2328. <a href="http://dx.doi.org/10.5194/acp-18-2307-2018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/127545/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Martini DZ; Aragão LEOECD; Sanches ID; Galdos MV; da Silva CRU; Dalla-Nora EL (2018) Land availability for sugarcane derived jet-biofuels in São Paulo—Brazil. <i>Land Use Policy</i>, <b>70</b> , pp. 256-262. <a href="http://dx.doi.org/10.1016/j.landusepol.2017.10.035"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/135374/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Maycock AC; Matthes K; Tegtmeier S; Schmidt H; Thiéblemont R; Hood L; Akiyoshi H; Bekki S; Deushi M; Jöckel P (2018) The representation of solar cycle signals in stratospheric ozone – Part 2: Analysis of global models. <i>Atmospheric Chemistry and Physics</i>, <b>18</b> (15), pp. 11323-11343. <a href="http://dx.doi.org/10.5194/acp-18-11323-2018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/129382/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Maycock AC; Randel WJ; Steiner AK; Karpechko AY; Cristy J; Saunders R; Thompson DWJ; Zou C-Z; Chrysanthou A; Abraham NL (2018) Revisiting the mystery of recent stratospheric temperature trends. <i>Geophysical Research Letters</i>, <b>45</b> (18), pp. 9919-9933. <a href="http://dx.doi.org/10.1029/2018GL078035"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131023/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
McMillan MJ; Shepherd A; Muir A; Gaudelli J; Hogg A; Cullen R (2018) Assessment of CryoSat-2 interferometric and non-interferometric SAR altimetry over ice sheets. <i>Advances in Space Research</i>, <b>62</b> (6), pp. 1281-1291. <a href="http://dx.doi.org/10.1016/j.asr.2017.11.036"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/125161/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Montesino-San Martin M; Wallach D; Olesen JE; Challinor AJ; Hoffman MP; Koehler AK; Roetter RP; Porter JR (2018) Data requirements for crop modelling-Applying the learning curve approach to the simulation of winter wheat flowering time under climate change. <i>European Journal of Agronomy</i>, <b>95</b> , pp. 33-44. <a href="http://dx.doi.org/10.1016/j.eja.2018.02.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131303/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Morris PJ; Swindles GT; Valdes PJ; Ivanovic RF; Gregoire LJ; Smith MW; Tarasov L; Haywood AM; Bacon KL (2018) Global peatland initiation driven by regionally asynchronous warming. <i>Proceedings of the National Academy of Sciences</i>, <b>115</b> (19), pp. 4851-4856. <a href="http://dx.doi.org/10.1073/pnas.1717838115"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/129090/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Myhre G; Kramer RJ; Smith CJ; Hodnebrog Ø; Forster P; Soden BJ; Samset BH; Stjern CW; Andrews T; Boucher O (2018) Quantifying the Importance of Rapid Adjustments for Global Precipitation Changes. <i>Geophysical Research Letters</i>, <b>45</b> (20), pp. 11399-11405. <a href="http://dx.doi.org/10.1029/2018GL079474"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138654/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Myhre G; Samset BH; Hodnebrog Ø; Andrews T; Boucher O; Faluvegi G; Fläschner D; Forster PM; Kasoar M; Kharin V (2018) Sensible heat has significantly affected the global hydrological cycle over the historical period. <i>Nature Communications</i>, <b>9</b> , 1922. <a href="http://dx.doi.org/10.1038/s41467-018-04307-4"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131473/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ng HC; Robinson LF; McManus JF; Mohamed KJ; Jacobel AW; Ivanovic RF; Gregoire LJ; Chen T (2018) Coherent deglacial changes in western Atlantic Ocean circulation. <i>Nature Communications</i>, <b>9</b> , 2947. <a href="http://dx.doi.org/10.1038/s41467-018-05312-3"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132789/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Panitz S; Salzmann U; Risebrobakken B; De Schepper S; Pound MJ; Haywood AM; Dolan AM; Lunt DJ (2018) Orbital, tectonic and oceanographic controls on Pliocene climate and atmospheric circulation in Arctic Norway. <i>Global and Planetary Change</i>, <b>161</b> , pp. 183-193. <a href="http://dx.doi.org/10.1016/j.gloplacha.2017.12.022"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/125874/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Parrinello T; Shepherd A; Bouffard J; Badessi S; Casal T; Davidson M; Fornari M; Maestroni E; Scagliola M (2018) CryoSat: ESA’s ice mission – Eight years in space. <i>Advances in Space Research</i>, . <a href="http://dx.doi.org/10.1016/j.asr.2018.04.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Pattnayak KC; Gloor E; Tindall JC; Brienen RJW; Barichivich J; Baker JCA; Spracklen DV; Cintra BBL; Coelho CAS (2018) Adding new evidence to the attribution puzzle of the recent water shortage over São Paulo (Brazil). <i>Tellus A: Dynamic Meteorology and Oceanography</i>, <b>70</b> (1), 1481690. <a href="http://dx.doi.org/10.1080/16000870.2018.1481690"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/133840/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Prescott CL; Dolan AM; Haywood AM; Hunter SJ; Tindall JC (2018) Regional climate and vegetation response to orbital forcing within the mid-Pliocene Warm Period: A study using HadCM3. <i>Global and Planetary Change</i>, <b>161</b> , pp. 231-243. <a href="http://dx.doi.org/10.1016/j.gloplacha.2017.12.015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/125410/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Rap A; Scott CE; Reddington CL; Mercado L; Ellis RJ; Garraway S; Evans MJ; Beerling DJ; MacKenzie AR; Hewitt CN (2018) Enhanced global primary production by biogenic aerosol via diffuse radiation fertilization. <i>Nature Geoscience</i>, <b>11</b> (9), pp. 640-644. <a href="http://dx.doi.org/10.1038/s41561-018-0208-3"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/133967/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Rees-Owen RL; Gill F; Newton RJ; Ivanovic RF; Francis JE; Riding JB; Vane CH; Lopes dos Santos RA (2018) The last forests on Antarctica: Reconstructing flora and temperature from the Neogene Sirius Group, Transantarctic Mountains. <i>Organic Geochemistry</i>, <b>118</b> , pp. 4-14. <a href="http://dx.doi.org/10.1016/j.orggeochem.2018.01.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/126994/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Richardson TB; Forster PM; Andrews T; Boucher O; Faluvegi G; Fläschner D; Hodnebrog Ø; Kasoar M; Kirkevåg A; Larmarque J-F (2018) Drivers of precipitation change: An energetic understanding. <i>Journal of Climate</i>, <b>31</b> (23), pp. 9641-9657. <a href="http://dx.doi.org/10.1175/JCLI-D-17-0240.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/135867/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Richardson TB; Forster PM; Andrews T; Boucher O; Faluvegi G; Fläschner D; Kasoar M; Kirkevåg A; Lamarque J-F; Myhre G (2018) Carbon dioxide physiological forcing dominates projected Eastern Amazonian drying. <i>Geophysical Research Letters</i>, <b>45</b> (6), pp. 2815-2825. <a href="http://dx.doi.org/10.1002/2017GL076520"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/128187/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Robson J; Sutton RT; Archibald A; Cooper F; Christensen M; Gray LJ; Holliday NP; Macintosh C; McMillan M; Moat B (2018) Recent multivariate changes in the North Atlantic climate system, with a focus on 2005–2016. <i>International Journal of Climatology</i>, <b>38</b> (14), pp. 5050-5076. <a href="http://dx.doi.org/10.1002/joc.5815"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/135744/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Samset BH; Sand M; Smith CJ; Bauer SE; Forster PM; Fuglestvedt JS; Osprey S; Schleussner C-F (2018) Climate Impacts From a Removal of Anthropogenic Aerosol Emissions. <i>Geophysical Research Letters</i>, <b>45</b> (2), pp. 1020-1029. <a href="http://dx.doi.org/10.1002/2017GL076079"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/126653/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Scott CE; Monks SA; Spracklen DV; Arnold SR; Forster PM; Rap A; Aijala M; Artaxo P; Carslaw KS; Chipperfield MP (2018) Impact on short-lived climate forcers increases projected warming due to deforestation. <i>Nature Communications</i>, <b>9</b> , 157. <a href="http://dx.doi.org/10.1038/s41467-017-02412-4"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/126170/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Shepherd A; Fricker HA; Farrell SL (2018) Trends and connections across the Antarctic cryosphere. <i>Nature</i>, <b>558</b> (7709), pp. 223-232. <a href="http://dx.doi.org/10.1038/s41586-018-0171-6"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132857/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Slater T; Shepherd A (2018) Antarctic ice losses tracking high. <i>Nature Climate Change</i>, <b>8</b> , pp. 1025-1026. <a href="http://dx.doi.org/10.1038/s41558-018-0284-9"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/135858/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Slater T; Shepherd A; McMillan M; Muir A; Gilbert L; Hogg AE; Konrad H; Parrinello T (2018) A new digital elevation model of Antarctica derived from CryoSat-2 altimetry. <i>The Cryosphere</i>, <b>12</b> (4), pp. 1551-1562. <a href="http://dx.doi.org/10.5194/tc-12-1551-2018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/130380/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Smith C; Kramer R; Myhre G; Forster PM; Soden B; Andrews T; Boucher O; Faluvegi G; Fläschner D; Hodnebrog Ø (2018) Understanding Rapid Adjustments to Diverse Forcing Agents. <i>Geophysical Research Letters</i>, <b>45</b> (21), pp. 12023-12031. <a href="http://dx.doi.org/10.1029/2018GL079826"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/137403/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Smith CJ; Forster PM; Allen M; Leach N; Millar RJ; Passerello GA; Regayre LA (2018) FAIR v1.3: A simple emissions-based impulse response and carbon cycle model. <i>Geoscientific Model Development</i>, <b>11</b> (6), pp. 2273-2297. <a href="http://dx.doi.org/10.5194/gmd-11-2273-2018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131031/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Smith YM; Hill DJ; Dolan AM; Haywood AM; Dowsett HJ; Risebrobakken B (2018) Icebergs in the Nordic Seas Throughout the Late Pliocene. <i>Paleoceanography and Paleoclimatology</i>, <b>33</b> (3), pp. 318-335. <a href="http://dx.doi.org/10.1002/2017PA003240"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/128223/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Swindles GT; Morris PJ; Whitney B; Galloway JM; Gałka M; Gallego-Sala A; Macumber AL; Mullan D; Smith MW; Amesbury MJ (2018) Ecosystem state shifts during long-term development of an Amazonian peatland. <i>Global Change Biology</i>, <b>24</b> (2), pp. 738-757. <a href="http://dx.doi.org/10.1111/gcb.13950"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/123120/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Tang T; Shindell D; Samset BH; Boucher O; Forster PM; Hodnebrog Ø; Myhre G; Sillmann J; Voulgarakis A; Andrews T (2018) Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols. <i>Atmospheric Chemistry and Physics</i>, <b>18</b> (11), pp. 8439-8452. <a href="http://dx.doi.org/10.5194/acp-18-8439-2018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/133730/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
The IMBIE Team; Shepherd A; Ivins E; Rignot E; Smith B; van den Broeke M; Velicogna I; Whitehouse P; Briggs K; Joughin I (2018) Mass balance of the Antarctic Ice Sheet from 1992 to 2017. <i>Nature</i>, <b>558</b> , pp. 219-222. <a href="http://dx.doi.org/10.1038/s41586-018-0179-y"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132373/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Tilling RL; Ridout A; Shepherd A (2018) Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data. <i>Advances in Space Research</i>, <b>62</b> (6), pp. 1203-1225. <a href="http://dx.doi.org/10.1016/j.asr.2017.10.051"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/123597/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wallach D; Martre P; Liu B; Asseng S; Ewert F; Thorburn PJ; van Ittersum M; Aggarwal PK; Ahmed M; Basso B (2018) Multi‐model ensembles improve predictions of crop‐environment‐management interactions. <i>Global Change Biology</i>, <b>24</b> (11), pp. 5072-5083. <a href="http://dx.doi.org/10.1111/gcb.14411"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/133423/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Waugh DW; Grise KM; Seviour WJM; Davis SM; Davis N; Adam O; Son S-W; Simpson IR; Staten PW; Maycock AC (2018) Revisiting the Relationship among Metrics of Tropical Expansion. <i>Journal of Climate</i>, <b>31</b> , pp. 7565-7581. <a href="http://dx.doi.org/10.1175/JCLI-D-18-0108.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132385/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Whitfield S; Challinor AJ; Rees RM (2018) Frontiers in Climate Smart Food Systems: outlining the research space. <i>Frontiers in Sustainable Food Systems</i>, <b>2</b> , 2. <a href="http://dx.doi.org/10.3389/fsufs.2018.00002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/126610/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic R; Gregoire L; Wickert A; Mitrovica J (2018) <i>Climate model data presented in ’Acceleration of northern ice sheet melt induces AMOC slowdown and northern cooling in simulations of the early last deglaciation’</i> . <a href="http://dx.doi.org/10.5518/400"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>

2017

Galdos MV; Cantarella H; Hastings A; Hillier J; Smith P (2017) Environmental sustainability aspects of second generation ethanol production from sugarcane. <i>Advances of Basic Science for Second Generation Bioethanol from Sugarcane</i>, pp. 177-195. <a href="http://dx.doi.org/10.1007/978-3-319-49826-3_10"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Rosolem CA; Ritz K; Cantarella H; Galdos MV; Hawkesford MJ; Whalley WR; Mooney SJ (2017) Enhanced Plant Rooting and Crop System Management for Improved N Use Efficiency. <i>Advances in Agronomy</i>, 146, pp. 205-239. <a href="http://dx.doi.org/10.1016/bs.agron.2017.07.002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Whitfield S (2017) GM crops 'for Africa': Contestation and knowledge politics in the Kenyan biosafety debate. <i>Agronomy for Development: The Politics of Knowledge in Agricultural Research</i>, pp. 44-58. <a href="http://dx.doi.org/10.4324/9781315284057"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Quartly GD; Nencioli F; Labroue S; Femenias P; Scharroo R; Abdalla S; Bonnefond P; Cancet M; Frery M-L; Raynal M (2017) <i>Ensuring that the Sentinel-3A altimeter provides climate-quality data</i> REMOTE SENSING OF THE OCEAN, SEA ICE, COASTAL WATERS, AND LARGE WATER REGIONS 2017, UNSP 104220R. <a href="http://dx.doi.org/10.1117/12.2277593"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Gregoire L; Ivanovic R (2017) <i>Climate model data presented in ’Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate’</i> . <a href="http://dx.doi.org/10.5518/305"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Brooke JSA; Feng W; Carrillo-Sánchez JD; Mann GW; James AD; Bardeen CG; Plane JMC (2017) Meteoric Smoke Deposition in the Polar Regions: A Comparison of Measurements With Global Atmospheric Models. <i>Journal of Geophysical Research: Atmospheres</i>, <b>122</b> (20), pp. 11112-11130. <a href="http://dx.doi.org/10.1002/2017JD027143"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/121209/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
De Boer B; Haywood AM; Dolan AM; Hunter SJ; Prescott CL (2017) The transient response of ice volume to orbital forcing during the warm Late Pliocene. <i>Geophysical Research Letters</i>, <b>44</b> (20), pp. 10486-10494. <a href="http://dx.doi.org/10.1002/2017GL073535"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/122243/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dougill AJ; Whitfield S; Stringer LC; Vincent K; Wood BT; Chinseu EL; Steward P; Mkwambisi DD (2017) Mainstreaming conservation agriculture in Malawi: Knowledge gaps and institutional barriers. <i>Journal of Environmental Management</i>, <b>195</b> (1), pp. 25-34. <a href="http://dx.doi.org/10.1016/j.jenvman.2016.09.076"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/105741/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Fodor N; Challinor A; Droutsas I; Ramirez-Villegas J; Zabel F; Koehler A-K; Foyer CH (2017) Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production. <i>Plant and Cell Physiology</i>, <b>58</b> (11), pp. 1833-1847. <a href="http://dx.doi.org/10.1093/pcp/pcx141"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/120764/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gourmelen N; Escorihuela MJ; Shepherd A; Foresta L; Muir A; Garcia-Mondéjar A; Roca M; Baker SG; Drinkwater MR (2017) CryoSat-2 swath interferometric altimetry for mapping ice elevation and elevation change. <i>Advances in Space Research</i>, . <a href="http://dx.doi.org/10.1016/j.asr.2017.11.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Gourmelen N; Goldberg DN; Snow K; Henley SF; Bingham RG; Kimura S; Hogg AE; Shepherd A; Mouginot J; Lenaerts JTM (2017) Channelized Melting Drives Thinning Under a Rapidly Melting Antarctic Ice Shelf. <i>Geophysical Research Letters</i>, <b>44</b> (19), pp. 9796-9804. <a href="http://dx.doi.org/10.1002/2017GL074929"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/123361/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hill DJ; Bolton KP; Haywood AM (2017) Modelled ocean changes at the Plio-Pleistocene transition driven by Antarctic ice advance. <i>Nature Communications</i>, <b>8</b> , 14376. <a href="http://dx.doi.org/10.1038/ncomms14376"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/110157/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hogg AE; Shepherd A; Cornford SL; Briggs KH; Gourmelen N; Graham JA; Joughin I; Mouginot J; Nagler T; Payne AJ (2017) Increased ice flow in Western Palmer Land linked to ocean melting. <i>Geophysical Research Letters</i>, <b>44</b> (9), pp. 4159-4167. <a href="http://dx.doi.org/10.1002/2016GL072110"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/124696/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hollaway MJ; Arnold SR; Collins WJ; Folberth G; Rap A (2017) Sensitivity of mid-19th century tropospheric ozone to atmospheric chemistry-vegetation interactions. <i>Journal of Geophysical Research: Atmospheres</i>, <b>122</b> (4), pp. 2452-2473. <a href="http://dx.doi.org/10.1002/2016JD025462"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/110147/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic RF; Gregoire LJ; Wickert AD; Valdes PJ; Burke A (2017) Collapse of the North American ice saddle 14,500 years ago caused widespread cooling and reduced ocean overturning circulation. <i>Geophysical Research Letters</i>, <b>44</b> (1), pp. 383-392. <a href="http://dx.doi.org/10.1002/2016GL071849"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/109834/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Jones LM; Koehler A-K; Trnka M; Balek J; Challinor AJ; Atkinson HJ; Urwin PE (2017) Climate change is predicted to alter the current pest status of Globodera pallida and G. rostochiensis in the United Kingdom. <i>Global Change Biology</i>, <b>23</b> (11), pp. 4497-4507. <a href="http://dx.doi.org/10.1111/gcb.13676"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/113124/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Joshi M; Von Glasow R; Smith RS; Paxton CGM; Maycock AC; Lunt DJ; Loptson C; Markwick P (2017) Global warming and ocean stratification: a potential result of large extraterrestrial impacts. <i>Geophysical Research Letters</i>, <b>44</b> (8), pp. 3841-3848. <a href="http://dx.doi.org/10.1002/2017GL073330"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/114749/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Kageyama M; Albani S; Braconnot P; Harrison SP; Hopcroft PO; Ivanovic RF; Lambert F; Marti O; Peltier R; Peterschmitt J-Y (2017) The PMIP4 contribution to CMIP6 – Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. <i>Geoscientific Model Development</i>, <b>10</b> (11), pp. 4035-4055. <a href="http://dx.doi.org/10.5194/gmd-10-4035-2017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/112796/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Keeble J; Bednarz E; Banerjee A; Abraham NL; Harris NRP; Maycock AC; Pyle JA (2017) Diagnosing the radiative and chemical contributions to future changes in tropical column ozone with the UM-UKCA chemistry-climate model. <i>Atmospheric Chemistry and Physics</i>, <b>17</b> , pp. 13801-13818. <a href="http://dx.doi.org/10.5194/acp-17-13801-2017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/122028/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Konrad H; Gilbert L; Cornford SL; Payne A; Hogg A; Muir A; Shepherd A (2017) Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica. <i>Geophysical Research Letters</i>, <b>44</b> (2), pp. 910-918. <a href="http://dx.doi.org/10.1002/2016GL070733"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/109089/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Kovács T; Feng W; Totterdill A; Plane JMC; Dhomse S; Gomez-Martin JC; Stiller GP; Haenel FJ; Smith C; Forster PM (2017) Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model. <i>Atmospheric Chemistry and Physics</i>, <b>17</b> (2), pp. 883-898. <a href="http://dx.doi.org/10.5194/acp-17-883-2017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/111819/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Kuipers Munneke P; McGrath D; Medley B; Luckman A; Bevan S; Kulessa B; Jansen D; Booth A; Smeets P; Hubbard B (2017) Observationally constrained surface mass balance of Larsen C Ice Shelf, Antarctica. <i>The Cryosphere</i>, <b>11</b> , pp. 2411-2426. <a href="http://dx.doi.org/10.5194/tc-11-2411-2017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/121481/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Leeson AA; Van Wessem JM; Ligtenberg SRM; Shepherd A; Van Den Broeke MR; Killick R; Skvarca P; Marinsek S; Colwell S (2017) Regional climate of the Larsen B embayment 1980–2014. <i>Journal of Glaciology</i>, <b>63</b> (240), pp. 683-690. <a href="http://dx.doi.org/10.1017/jog.2017.39"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/141005/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Maiorano A; Martre P; Asseng S; Ewert F; Müller C; Rötter RP; Ruane AC; Semenov MA; Wallach D; Wang E (2017) Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. <i>Field Crops Research</i>, <b>202</b> , pp. 5-20. <a href="http://dx.doi.org/10.1016/j.fcr.2016.05.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/100059/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Martre P; Reynolds MP; Asseng S; Ewert F; Alderman PD; Cammarano D; Maiorano A; Ruane AC; Aggarwal PK; Anothai J (2017) The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations. <i>Open Data Journal for Agricultural Research</i>, <b>3</b> , pp. 23-28. <a href="http://dx.doi.org/10.18174/odjar.v3i1.15766"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/111466/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Matero ISO; Gregoire LJ; Ivanovic RF; Tindall JC; Haywood AM (2017) The 8.2 ka cooling event caused by Laurentide ice saddle collapse. <i>Earth and Planetary Science Letters</i>, <b>473</b> , pp. 205-214. <a href="http://dx.doi.org/10.1016/j.epsl.2017.06.011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/117290/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Matthes K; Funke B; Anderson M; Barnard L; Beer J; Charbonneau P; Clilverd M; Dudok de Wit T; Haberreiter M; Hendry A (2017) Solar Forcing for CMIP6 (v3.2). <i>Geoscientific Model Development</i>, <b>10</b> (6), pp. 2247-2302. <a href="http://dx.doi.org/10.5194/gmd-10-2247-2017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/118549/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ming AD; Maycock AC; Hitchcock P; Haynes PH (2017) The radiative role of ozone and water vapour in the annual temperature cycle in the tropical tropopause layer. <i>Atmospheric Chemistry and Physics</i>, <b>17</b> (9), pp. 5677-5701. <a href="http://dx.doi.org/10.5194/acp-17-5677-2017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/116069/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Myhre G; Forster PM; Samset BH; Hodnebrog Ø; Sillmann J; Aalbergsjø SG; Andrews T; Boucher O; Faluvegi G; Fläschner D (2017) PDRMIP: A Precipitation Driver and Response Model Intercomparison Project—Protocol and Preliminary Results. <i>Bulletin of the American Meteorological Society</i>, <b>98</b> (6), pp. 1185-1198. <a href="http://dx.doi.org/10.1175/BAMS-D-16-0019.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/118817/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Otto-Bliesner BL; Braconnot P; Harrison SP; Lunt DJ; Abe-Ouchi A; Albani S; Bartlein PJ; Capron E; Carlson AE; Dutton A (2017) The PMIP4 contribution to CMIP6 - Part 2: Two Interglacials, Scientific Objective and Experimental Design for Holocene and Last Interglacial Simulations. <i>Geoscientific Model Development</i>, <b>10</b> , pp. 3979-4003. <a href="http://dx.doi.org/10.5194/gmd-10-3979-2017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/112798/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ramirez-Villegas J; Koehler AK; Challinor AJ (2017) Assessing uncertainty and complexity in regional-scale crop model simulations. <i>European Journal of Agronomy</i>, <b>88</b> , pp. 84-95. <a href="http://dx.doi.org/10.1016/j.eja.2015.11.021"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/94894/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Roy C; Fadnavis S; Müller R; Ayantika DC; Ploeger F; Rap A (2017) Influence of enhanced Asian NOx emissions on ozone in the upper troposphere and lower stratosphere in chemistry–climate model simulations. <i>Atmospheric Chemistry and Physics</i>, <b>17</b> (2), pp. 1297-1311. <a href="http://dx.doi.org/10.5194/acp-17-1297-2017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/112393/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Scott CE; Monks SA; Spracklen DV; Arnold SR; Forster PM; Rap A; Carslaw KS; Chipperfield MP; Reddington CL; Wilson C (2017) Impact on short-lived climate forcers (SLCFs) from a realistic land-use change scenario via changes in biogenic emissions. <i>Faraday Discussions</i>, <b>200</b> , pp. 101-120. <a href="http://dx.doi.org/10.1039/c7fd00028f"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/116690/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Shepherd A; Nowicki S (2017) Improvements in ice-sheet sea-level projections. <i>Nature Climate Change</i>, <b>7</b> (10), pp. 672-674. <a href="http://dx.doi.org/10.1038/nclimate3400"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Smith CJ; Bright JM; Crook R (2017) Cloud cover effect of clear-sky index distributions and differences between human and automatic cloud observations. <i>Solar Energy</i>, <b>144</b> , pp. 10-21. <a href="http://dx.doi.org/10.1016/j.solener.2016.12.055"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/110263/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Smith CJ; Crook JA; Crook R; Jackson LS; Osprey SM; Forster PM (2017) Impacts of stratospheric sulfate geoengineering on global solar photovoltaic and concentrating solar power resource. <i>Journal of Applied Meteorology and Climatology</i>, <b>56</b> , pp. 1483-1497. <a href="http://dx.doi.org/10.1175/JAMC-D-16-0298.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/112809/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Stjern CW; Samset BH; Myhre G; Forster PM; Hodnebrog O; Andrews T; Boucher O; Faluvegi G; Iversen T; Kasoar M (2017) Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations. <i>Journal of Geophysical Research: Atmospheres</i>, <b>122</b> (21), pp. 11462-11481. <a href="http://dx.doi.org/10.1002/2017JD027326"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/123582/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Tindall JC; Haywood AM; Thirumalai K (2017) Modeling the Stable Water Isotope Expression of El Niño in the Pliocene: Implications for the Interpretation of Proxy Data. <i>Paleoceanography</i>, <b>32</b> (8), pp. 881-902. <a href="http://dx.doi.org/10.1002/2016PA003059"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/120121/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wang E; Martre P; Zhao Z; Ewert F; Maiorano A; Rötter RP; Kimball BA; Ottman MJ; Wall GW; White JW (2017) Author Correction: The uncertainty of crop yield projections is reduced by improved temperature response functions. <i>Nature Plants</i>, <b>3</b> , pp. 833-833. <a href="http://dx.doi.org/10.1038/s41477-017-0032-6"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/126327/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wang E; Martre P; Zhao Z; Ewert F; Maiorano A; Rötter RP; Kimball BA; Ottman MJ; Wall GW; White JW (2017) The uncertainty of crop yield projections is reduced by improved temperature response functions. <i>Nature Plants</i>, <b>3</b> , 17102. <a href="http://dx.doi.org/10.1038/nplants.2017.102"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/119376/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wang E; Martre P; Zhao Z; Ewert F; Maiorano A; Rötter RP; Kimball BA; Ottman MJ; Wall GW; White JW (2017) Erratum: The uncertainty of crop yield projections is reduced by improved temperature response functions. <i>Nature Plants</i>, <b>3</b> (8), pp. 17125-17125. <a href="http://dx.doi.org/10.1038/nplants.2017.125"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Whitfield S (2017) ‘More vital to our future than we realize?’ Learning from Netting’s thesis on smallholder farming, 25 years on. <i>Outlook on Agriculture</i>, <b>46</b> (4), pp. 258-264. <a href="http://dx.doi.org/10.1177/0030727017744931"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/125212/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Whitfield S; Marshall A (2017) Defining and Delivering 'Sustainable' Agriculture in the UK after Brexit: Interdisciplinary Lessons from Experiences of Agricultural Reform. <i>International Journal of Agricultural Sustainability</i>, <b>15</b> (5), pp. 501-513. <a href="http://dx.doi.org/10.1080/14735903.2017.1337837"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/116431/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Yan H; Wang S-Q; Da Rocha HR; Rap A; Bonal D; Butt N; Coupe NR; Shugart HH (2017) Simulation of the Unexpected Photosynthetic Seasonality in Amazonian Evergreen Forests by Using an Improved Diffuse Fraction‐Based Light Use Efficiency Model. <i>Journal of Geophysical Research: Biogeosciences</i>, <b>122</b> (11), pp. 3014-3030. <a href="http://dx.doi.org/10.1002/2017JG004008"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/124617/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>

2016

Whitfield S; Whitfield S (2016) GOVERNING ADAPTATION IN AFRICA'S AGRICULTURAL FUTURE. pp. 158-187.
Whitfield S; Whitfield S (2016) CONSTRUCTING UNCERTAINTY 'FROM BELOW' Continual adaptation in Kenyan smallholder farming. pp. 57-73.
Whitfield S; Whitfield S (2016) CONSTRUCTING UNCERTAINTY 'FROM ABOVE' Knowledge and narratives of climate change adaptation. pp. 33-56.
Whitfield S; Whitfield S (2016) NARRATIVES OF CHANGE IN AFRICAN AGRICULTURE. pp. 1-29.
Whitfield S; Whitfield S (2016) CRITICAL PERSPECTIVES ON CONSERVATION AGRICULTURE IN ZAMBIA AND MALAWI. pp. 103-130.
Whitfield S; Whitfield S (2016) BREEDING FOR AN UNCERTAIN FUTURE The case of 'drought-tolerant' and 'water-efficient' maize for Africa. pp. 77-102.
Richardson M; O'Connor F; Mann GW; Selwood P (2016) <i>Computational Efficiency Of The Aerosol Scheme In The Met Office Unified Model</i> CUG 2016 Proceedings. <a href="http://eprints.whiterose.ac.uk/125268/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Baker JCA; Gloor M; Spracklen DV; Arnold SR; Tindall JC; Clerici SJ; Leng MJ; Brienen RJW (2016) What drives interannual variation in tree ring oxygen isotopes in the Amazon?. <i>Geophysical Research Letters</i>, <b>43</b> (22), pp. 11831-11840. <a href="http://dx.doi.org/10.1002/2016GL071507"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/107218/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Banerjee A; Maycock AC; Archibald AT; Abraham NL; Telford P; Braesicke P; Pyle JA (2016) Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100. <i>Atmospheric Chemistry and Physics</i>, <b>16</b> (5), pp. 2727-2746. <a href="http://dx.doi.org/10.5194/acp-16-2727-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/95522/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Bednarz EM; Maycock AC; Abraham NL; Braesicke P; Dessens O; Pyle JA (2016) Future Arctic ozone recovery: the importance of chemistry and dynamics. <i>Atmospheric Chemistry and Physics</i>, <b>16</b> (18), pp. 12159-12176. <a href="http://dx.doi.org/10.5194/acp-16-12159-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/103541/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Butt E; Rap A; Schmidt A; Scott C; Pringle K; Reddington C; Richards N; Woodhouse M; Ramirez-Villegas J; Yang H (2016) The impact of residential combustion emissions on atmospheric aerosol, human health, and climate. <i>Atmospheric Chemistry and Physics</i>, <b>16</b> (2), pp. 873-905. <a href="http://dx.doi.org/10.5194/acp-16-873-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/94374/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Challinor AJ; Koehler AK; Ramirez-Villegas J; Whitfield S; Das B (2016) Current warming will reduce yields unless maize breeding and seed systems adapt immediately. <i>Nature Climate Change</i>, <b>6</b> (10), pp. 954-958. <a href="http://dx.doi.org/10.1038/nclimate3061"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/101355/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Chen T; Robinson LF; Beasley MP; Claxton LM; Andersen MB; Gregoire LJ; Wadham J; Fornari DJ; Harpp KS (2016) Ocean mixing and ice-sheet control of last deglacial seawater ²³⁴U/²³⁸U evolution. <i>Science</i>, <b>354</b> (6312), pp. 626-629. <a href="http://dx.doi.org/10.1126/science.aag1015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/105167/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Di Nezio PN; Timmerman A; Tierney JE; Jin F-F; Otto-Bliesner B; Rosenbloom N; Mapes B; Neale R; Ivanovic RF; Montenegro A (2016) The climate response of the Indo-Pacific warm pool to glacial sea level. <i>Paleoceanography</i>, <b>31</b> (6), pp. 866-894. <a href="http://dx.doi.org/10.1002/2015PA002890"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/100384/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dowsett HJ; Dolan AM; Rowley D; Moucha R; Forte AM; Mitrovica JX; Pound M; Salzmann U; Robinson M; Chandler M (2016) The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. <i>Climate of the Past</i>, <b>12</b> (7), pp. 1519-1538. <a href="http://dx.doi.org/10.5194/cp-12-1519-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/101344/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dunne EM; Gordon H; Kürten A; Almeida J; Duplissy J; Williamson C; Ortega IK; Pringle KJ; Adamov A; Baltensperger U (2016) Global atmospheric particle formation from CERN CLOUD measurements. <i>Science</i>, <b>354</b> (6316), pp. 1119-1124. <a href="http://dx.doi.org/10.1126/science.aaf2649"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/107269/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Foresta L; Gourmelen N; Pálsson F; Nienow P; Björnsson H; Shepherd A (2016) Surface elevation change and mass balance of Icelandic ice caps derived from swath mode CryoSat-2 altimetry. <i>Geophysical Research Letters</i>, <b>43</b> (23), pp. 12,138-12,145. <a href="http://dx.doi.org/10.1002/2016GL071485"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/115679/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Forster P; Richardson T; Maycock AC; Smith C; Samset BH; Myhre G; Andrews T; Pincus R; Schulz M (2016) Recommendations for diagnosing effective radiative forcing from climate models for CMIP6. <i>Journal of Geophysical Research: Atmospheres</i>, <b>121</b> (20), pp. 12460-12475. <a href="http://dx.doi.org/10.1002/2016JD025320"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/111875/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gordon H; Sengupta K; Rap A; Duplissy J; Frege C; Williamson C; Heinritzi M; Simon M; Yan C; Almeida J (2016) Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. <i>Proceedings of the National Academy of Sciences</i>, <b>113</b> (43), pp. 12053-12058. <a href="http://dx.doi.org/10.1073/pnas.1602360113"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/107267/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gregoire LJ; Otto-Bliesner B; Valdes PJ; Ivanovic R (2016) Abrupt Bølling warming and ice saddle collapse contributions to the Meltwater Pulse 1a rapid sea level rise. <i>Geophysical Research Letters</i>, <b>43</b> (17), pp. 9130-9137. <a href="http://dx.doi.org/10.1002/2016GL070356"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/103908/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Haywood AM; Dowsett HJ; Dolan AM (2016) Integrating geological archives and climate models for the mid-Pliocene warm period. <i>Nature Communications</i>, <b>7</b> , pp. 10646-10646. <a href="http://dx.doi.org/10.1038/ncomms10646"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Dowsett HJ; Dolan AM; Rowley D; Abe-Ouchi A; Otto-Bliesner B; Chandler MA; Hunter SJ; Lunt DJ; Pound M (2016) The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: Scientific Objectives and Experimental Design. <i>Climate of the Past</i>, <b>12</b> (3), pp. 663-675. <a href="http://dx.doi.org/10.5194/cp-12-663-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/95826/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hogg AE; Shepherd A; Gourmelen N; Engdahl M (2016) Grounding line migration from 1992 to 2011 on Petermann Glacier, North-West Greenland. <i>Journal of Glaciology</i>, <b>62</b> (236), pp. 1104-1114. <a href="http://dx.doi.org/10.1017/jog.2016.83"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/109695/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Holloway MD; Sime LC; Singarayer JS; Tindall JC; Bunch P; Valdes PJ (2016) Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse. <i>Nature Communications</i>, <b>7</b> , 12293. <a href="http://dx.doi.org/10.1038/ncomms12293"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/103982/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Holloway MD; Sime LC; Singarayer JS; Tindall JC; Valdes PJ (2016) Reconstructing paleosalinity from δ¹⁸O: Coupled model simulations of the Last Glacial Maximum, Last Interglacial and Late Holocene. <i>Quaternary Science Reviews</i>, <b>131</b> (B), pp. 350-364. <a href="http://dx.doi.org/10.1016/j.quascirev.2015.07.007"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/88862/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Holmes JA; Tindall J; Roberts N; Marshall W; Marshall JD; Bingham A; Feeser I; O'Connell M; Atkinson T; Jourdan AL (2016) Lake isotope records of the 8200-year cooling event in western Ireland: Comparison with model simulations. <i>Quaternary Science Reviews</i>, <b>131</b> (B), pp. 341-349. <a href="http://dx.doi.org/10.1016/j.quascirev.2015.06.027"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/89398/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Howell FW; Haywood AM; Dowsett HJ; Pickering SJ (2016) Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation. <i>Earth and Planetary Science Letters</i>, <b>441</b> , pp. 133-142. <a href="http://dx.doi.org/10.1016/j.epsl.2016.02.036"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/95856/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Howell FW; Haywood AM; Otto-Bliesner BL; Bragg FJ; Chan W-L; Chandler MA; Contoux C; Kamae Y; Abe-Ouchi A; Rosenbloom NA (2016) Arctic sea ice simulation in the PlioMIP ensemble. <i>Climate of the Past</i>, <b>12</b> (3), pp. 749-767. <a href="http://dx.doi.org/10.5194/cp-12-749-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/97095/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic RF; Gregoire LJ; Kageyama M; Roche DM; Valdes PJ; Burke A; Drummond R; Peltier WR; Tarasov L (2016) Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1) – PMIP4 Core experiment design and boundary conditions. <i>Geoscientific Model Development</i>, <b>9</b> (7), pp. 2563-2587. <a href="http://dx.doi.org/10.5194/gmd-9-2563-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/103124/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Kapadia ZZ; Spracklen DV; Arnold SR; Borman DJ; Mann GW; Pringle KJ; Monks SA; Reddington CL; Benduhn F; Rap A (2016) Impacts of aviation fuel sulfur content on climate and human health. <i>Atmospheric Chemistry and Physics</i>, <b>16</b> , pp. 10521-10541. <a href="http://dx.doi.org/10.5194/acp-16-10521-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/101853/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Kirkby J; Duplissy J; Sengupta K; Frege C; Gordon H; Williamson C; Heinritzi M; Simon M; Yan C; Almeida J (2016) Ion-induced nucleation of pure biogenic particles. <i>Nature</i>, <b>533</b> (7604), pp. 521-526. <a href="http://dx.doi.org/10.1038/nature17953"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/100258/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Kudzotsa I; Phillips VTJ; Dobbie S (2016) Aerosol Indirect Effects on Glaciated Clouds. Part II: Sensitivity Tests Using Solute Aerosols. <i>Quarterly Journal of the Royal Meteorological Society</i>, <b>142</b> (698 A), pp. 1970-1981. <a href="http://dx.doi.org/10.1002/qj.2790"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/99050/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Kudzotsa I; Phillips VTJ; Dobbie S; Formenton M; Sun J; Allen G; Bansemer A; Spracklen D; Pringle K (2016) Aerosol indirect effects on glaciated clouds. Part I: Model description. <i>Quarterly Journal of the Royal Meteorological Society</i>, <b>142</b> (698), pp. 1958-1969. <a href="http://dx.doi.org/10.1002/qj.2791"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/99048/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Liu B; Asseng S; Muller C; Ewert F; Elliott J; Lobell DB; Martre P; Ruane AC; Wallach D; Jones JW (2016) Similar estimates of temperature impacts on global wheat yield by three independent methods (vol 6, pg 1130, 2016). <i>NATURE CLIMATE CHANGE</i>, <b>6</b> (12).
Liu B; Asseng S; Müller C; Ewert F; Elliott J; Lobell DB; Martre P; Ruane AC; Wallach D; Jones JW (2016) Similar estimates of temperature impacts on global wheat yield by three independent methods. <i>Nature Climate Change</i>, <b>6</b> , pp. 1130-1136. <a href="http://dx.doi.org/10.1038/nclimate3115"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/104901/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Maycock AC (2016) The contribution of ozone to future stratospheric temperature trends. <i>Geophysical Research Letters</i>, <b>43</b> (9), pp. 4609-4616. <a href="http://dx.doi.org/10.1002/2016GL068511"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/97753/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Maycock AC; Matthes K; Tegtmeier S; Thieblemont R; Hood L (2016) The representation of solar cycle signals in stratospheric ozone – Part 1: A comparison of satellite observations. <i>Atmospheric Chemistry and Physics</i>, <b>16</b> (15), pp. 10021-10043. <a href="http://dx.doi.org/10.5194/acp-16-10021-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/102262/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
McMillan M; Leeson A; Shepherd A; Briggs K; Armitage TWK; Hogg A; Kuipers Munneke P; van den Broeke M; Noel B; van de Berg WJ (2016) A high resolution record of Greenland mass balance. <i>Geophysical Research Letters</i>, <b>43</b> (13), pp. 7002-7010. <a href="http://dx.doi.org/10.1002/2016GL069666"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/101031/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Nowicki SMJ; Payne A; Larour E; Seroussi H; Goelzer H; Lipscomb W; Gregory J; Abe-Ouchi A; Shepherd A (2016) Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6. <i>Geoscientific Model Development</i>, <b>9</b> (12), pp. 4521-4545. <a href="http://dx.doi.org/10.5194/gmd-9-4521-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
O'Sullivan MD; Rap A; Reddington CL; Spracklen DV; Gloor M; Buermann W (2016) Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century. <i>Geophysical Research Letters</i>, <b>43</b> (15), pp. 8060-8067. <a href="http://dx.doi.org/10.1002/2016GL068965"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/104038/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Reynolds MP; Quilligan E; Aggarwal PK; Bansal KC; Cavalieri AJ; Chapman SC; Chapotin SM; Datta SK; Duveiller E; Gill KS (2016) An integrated approach to maintaining cereal productivity under climate change. <i>Global Food Security</i>, <b>8</b> , pp. 9-18. <a href="http://dx.doi.org/10.1016/j.gfs.2016.02.002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Richardson TB; Forster PM; Andrews T; Parker DJ (2016) Understanding the rapid precipitation response to CO2 and aerosol forcing on a regional scale. <i>Journal of Climate</i>, <b>29</b> (2), pp. 583-594. <a href="http://dx.doi.org/10.1175/JCLI-D-15-0174.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/93881/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Richardson TB; Samset BH; Andrews T; Myhre G; Forster PM (2016) An assessment of precipitation adjustment and feedback computation methods. <i>Journal of Geophysical Research</i>, <b>121</b> (19), pp. 11,608-11,619. <a href="http://dx.doi.org/10.1002/2016JD025625"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/106035/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Samset BH; Myhre G; Forster PM; Hodnebrog Ø; Andrews T; Faluvegi G; Fläschner D; Kasoar M; Kharin V; Kirkevåg A (2016) Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. <i>Geophysical Research Letters</i>, <b>43</b> (6), pp. 2782-2791. <a href="http://dx.doi.org/10.1002/2016GL068064"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Schmidt A; Skeffington RA; Thordarson T; Self S; Forster PM; Rap A; Ridgwell A; Fowler D; Wilson BM; Mann G (2016) Selective environmental stress from sulphur emitted by continental flood basalt eruptions. <i>Nature Geoscience</i>, <b>9</b> (1), pp. 77-82. <a href="http://dx.doi.org/10.1038/ngeo2588"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/92239/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Siqueira Neto M; Galdos MV; Feigl BJ; Cerri CEP; Cerri CC (2016) Direct N 2 O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. <i>GCB Bioenergy</i>, <b>8</b> (2), pp. 269-280. <a href="http://dx.doi.org/10.1111/gcbb.12251"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Smith CJ; Forster PM; Crook R (2016) An all-sky radiative transfer method to predict optimal tilt and azimuth angle of a solar collector. <i>Solar Energy</i>, <b>123</b> , pp. 88-101. <a href="http://dx.doi.org/10.1016/j.solener.2015.11.013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/92440/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Steffen W; Leinfelder R; Zalasiewicz J; Waters CN; Williams M; Summerhayes C; Barnosky AD; Cearreta A; Crutzen P; Edgeworth M (2016) Stratigraphic and Earth System approaches to defining the Anthropocene. <i>Earth's Future</i>, <b>4</b> (8), pp. 324-345. <a href="http://dx.doi.org/10.1002/2016EF000379"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/104069/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Tilling RL; Ridout A; Shepherd A (2016) Near-real-time Arctic sea ice thickness and volume from CryoSat-2. <i>Cryosphere</i>, <b>10</b> (5), pp. 2003-2012. <a href="http://dx.doi.org/10.5194/tc-10-2003-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/105854/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Tindall JC; Haywood AM; Howell FW (2016) Accounting for Centennial Scale Variability when Detecting Changes in ENSO: a study of the Pliocene. <i>Paleoceanography</i>, <b>31</b> (10), pp. 1330-1349. <a href="http://dx.doi.org/10.1002/2016PA002951"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/105707/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Totterdill A; Kovács T; Feng W; Dhomse S; Smith CJ; Gómez-Martín JC; Chipperfield MP; Forster PM; Plane JMC (2016) Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF₃ and CF₃CF₂Cl (CFC-115). <i>Atmospheric Chemistry and Physics</i>, <b>16</b> (17), pp. 11451-11463. <a href="http://dx.doi.org/10.5194/acp-16-11451-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/104680/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Turnock ST; Butt EW; Richardson TB; Mann GW; Reddington CL; Forster PM; Haywood J; Crippa M; Janssens-Maenhout G; Johnson CE (2016) The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate. <i>Environmental Research Letters</i>, <b>11</b> (2), 024010. <a href="http://dx.doi.org/10.1088/1748-9326/11/2/024010"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/97073/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
von der Heydt AS; Dijkstra HA; van de Wal RSW; Caballero R; Crucifix M; Foster GL; Huber M; Kohler P; Rohling E; Valdes PJ (2016) Lessons on climate sensitivity from past climate changes. <i>Current Climate Change Reports</i>, <b>2</b> (4), pp. 148-158. <a href="http://dx.doi.org/10.1007/s40641-016-0049-3"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/104547/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Yang H; Dobbie S; Ramirez-Villegas J; Feng K; Challinor AJ; Chen B; Gao Y; Lee L; Yin Y; Sun L (2016) Potential negative consequences of geoengineering on crop production: a study of Indian groundnut. <i>Geophysical Research Letters</i>, <b>43</b> (22), pp. 11786-11795. <a href="http://dx.doi.org/10.1002/2016GL071209"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/106949/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Zanchettin D; Khodri M; Timmreck C; Toohey M; Schmidt A; Gerber EP; Hegerl G; Robock A; Pausata FSR; Ball WT (2016) The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6. <i>Geoscientific Model Development</i>, <b>9</b> (8), pp. 2701-2719. <a href="http://dx.doi.org/10.5194/gmd-9-2701-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/103932/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>

2015

Whitfield S (2015) <i>Adapting to Climate Uncertainty in African Agriculture: Narratives and Knowledge Politics</i>. . <a href="http://dx.doi.org/10.4324/9781315725680"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Maycock A; Misios S (2015) 'Top-down' versus 'bottom-up' mechanisms for solar-climate coupling. <i>In:</i> Dudok de Wit T; Ermolli I; Haberreiter M; Kambezidis H; Lam MM; Lilenstein J; Matthes K; Mironova I; Schmidt H; Seppala A eds. <i>Earth's climate response to a changing Sun A review of the current understanding by the European research group TOSCA</i>, EDP Sciences, . <a href="http://dx.doi.org/10.1051/978-2-7598-1733-7"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Sumberg J; Anyidoho NA; Chasukwa M; Chinsinga B; Leavy J; Tadele G; Whitfield S; Yaro J (2015) Young people, agriculture, and employment in rural Africa. <i>African Youth and the Persistence of Marginalization: Employment, Politics, and Prospects for Change</i>, pp. 111-132.
Walter A; Galdos MV; Scarpare FV; Leal MRLV; Seabra JEA; Da Cunha MP; Picoli MCA; De Oliveira COF (2015) Brazilian Sugarcane Ethanol: Developments so far and Challenges for the Future. <i>Advances in Bioenergy: The Sustainability Challenge</i>, pp. 373-394. <a href="http://dx.doi.org/10.1002/9781118957844.ch24"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Gooding J; Smith CJ; Crook R; Tomlin AS (2015) <i>Solar Resource Estimation Using a Radiative Transfer with Shading (RTS) Model</i> EU PVSEC 2015 Conference Proceedings, pp. 2800-2805. <a href="http://dx.doi.org/10.4229/EUPVSEC20152015-6AV.4.25"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Smith CJ; Crook R; Forster PM (2015) <i>Changes in solar PV output due to water vapour loading in a future climate scenario</i> EU PVSEC Proceedings, pp. 2102-2105. <a href="http://dx.doi.org/10.4229/EUPVSEC20152015-5BV.1.30"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Asseng S; Ewert F; Martre P; Roetter RP; Lobell DB; Cammarano D; Kimball BA; Ottman MJ; Wall GW; White JW (2015) Rising temperatures reduce global wheat production. <i>Nature Climate Change</i>, <b>5</b> (2), pp. 143-147. <a href="http://dx.doi.org/10.1038/nclimate2470"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/85540/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Bright JM; Smith CJ; Taylor PG; Crook R (2015) Stochastic generation of synthetic minutely irradiance time series derived from mean hourly weather observation data. <i>Solar Energy</i>, <b>115</b> , pp. 229-242. <a href="http://dx.doi.org/10.1016/j.solener.2015.02.032"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/84600/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
D'Andrea SD; Acosta Navarro JC; Farina SC; Scott CE; Rap A; Farmer DK; Spracklen DV; Riipinen I; Pierce JR (2015) Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation. <i>Atmospheric Chemistry and Physics</i>, <b>15</b> , pp. 2247-2268. <a href="http://dx.doi.org/10.5194/acp-15-2247-2015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/84031/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dolan AM; Haywood AM; Hunter SJ; Tindall JC; Dowsett HJ; Hill DJ; Pickering SJ (2015) Modelling the enigmatic Late Pliocene Glacial Event - Marine Isotope Stage M2. <i>GLOBAL AND PLANETARY CHANGE</i>, <b>128</b> , pp. 47-60. <a href="http://dx.doi.org/10.1016/j.gloplacha.2015.02.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dolan AM; Hunter SJ; Hill DJ; Haywood AM; Koenig SJ; Otto-Bliesner BL; Abe-Ouchi A; Bragg F; Chan W-L; Chandler MA (2015) Using results from the PlioMIP ensemble to investigate the Greenland Ice Sheet during the mid-Pliocene Warm Period. <i>Climate of the Past</i>, <b>11</b> (3), pp. 403-424. <a href="http://dx.doi.org/10.5194/cp-11-403-2015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Falloon P; Bebber D; Bryant J; Bushell M; Challinor AJ; Dessai S; Gurr S; Koehler AK (2015) Using climate information to support crop breeding decisions and adaptation in agriculture. <i>World Agriculture</i>, <b>5</b> (1), pp. 25-43. <a href="http://eprints.whiterose.ac.uk/89022/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Garcia-Carreras L; Challinor A; Parkes B; Birch CE; Nicklin KJ; Parker DJ (2015) The Impact of Parameterized Convection on the Simulation of Crop Processes. <i>Journal of Applied Meteorology and Climatology</i>, <b>54</b> (6), pp. 1283-1296. <a href="http://dx.doi.org/10.1175/JAMC-D-14-0226.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/85904/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gollany HT; Titus BD; Scott DA; Asbjornsen H; Resh SC; Chimner RA; Kaczmarek DJ; Leite LFC; Ferreira ACC; Rod KA (2015) Biogeochemical Research Priorities for Sustainable Biofuel and Bioenergy Feedstock Production in the Americas. <i>Environmental Management</i>, <b>56</b> (6), pp. 1330-1355. <a href="http://dx.doi.org/10.1007/s00267-015-0536-7"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Gomez N; Gregoire LJ; Mitrovica JX; Payne AJ (2015) Laurentide-Cordilleran Ice Sheet saddle collapse as a contribution to meltwater pulse 1A. <i>Geophysical Research Letters</i>, <b>42</b> (10), pp. 3954-3962. <a href="http://dx.doi.org/10.1002/2015GL063960"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/85255/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gregoire LJ; Valdes PJ; Payne AJ (2015) The relative contribution of orbital forcing and greenhouse gases to the North American deglaciation. <i>Geophysical Research Letters</i>, <b>42</b> (22), pp. 9970-9979. <a href="http://dx.doi.org/10.1002/2015GL066005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/92096/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hardiman SC; Boutle IA; Bushell AC; Butchart N; Cullen MJP; Field PR; Furtado K; Manners JC; Milton SF; Morcrette C (2015) Processes Controlling Tropical Tropopause Temperature and Stratospheric Water Vapor in Climate Models. <i>Journal of Climate</i>, <b>28</b> (16), pp. 6516-6535. <a href="http://dx.doi.org/10.1175/JCLI-D-15-0075.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90158/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Harris NRP; Hassler B; Tummon F; Bodeker GE; Hubert D; Petropavlovskikh I; Steinbrecht W; Anderson J; Bhartia PK; Boone CD (2015) Past changes in the vertical distribution of ozone - Part 3: Analysis and interpretation of trends. <i>Atmospheric Chemistry and Physics</i>, <b>15</b> (17), pp. 9965-9982. <a href="http://dx.doi.org/10.5194/acp-15-9965-2015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90159/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Haywood AM; Dowsett HJ; Dolan AM; Rowley D; Abe-Ouchi A; Otto-Bliesner B; Chandler MA; Hunter SJ; Lunt DJ; Pound M (2015) Pliocene Model Intercomparison (PlioMIP) Phase 2: scientific objectives and experimental design. <i>Climate of the Past Discussions</i>, <b>11</b> (4), pp. 4003-4038. <a href="http://dx.doi.org/10.5194/cpd-11-4003-2015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Herbert RJ; Murray BJ; Dobbie JSE; Koop T (2015) Sensitivity of liquid clouds to homogenous freezing parameterizations. <i>Geophysical Research Letters</i>, <b>42</b> (5), pp. 1599-1605. <a href="http://dx.doi.org/10.1002/2014GL062729"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/84491/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hill DJ (2015) The non-analogue nature of Pliocene temperature gradients. <i>Earth and Planetary Science Letters</i>, <b>425</b> , pp. 232-241. <a href="http://dx.doi.org/10.1016/j.epsl.2015.05.044"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/87717/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hossaini R; Chipperfield MP; Montzka SA; Rap A; Dhomse S; Feng W (2015) Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone. <i>Nature Geoscience</i>, <b>8</b> , pp. 186-190. <a href="http://dx.doi.org/10.1038/ngeo2363"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/86501/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ineson S; Maycock AC; Gray LJ; Scaife AA; Dunstone NJ; Harder JW; Knight JR; Lockwood M; Manners JC; Wood RA (2015) Regional climate impacts of a possible future grand solar minimum. <i>Nature Communications</i>, <b>6</b> , 7535. <a href="http://dx.doi.org/10.1038/ncomms8535"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90157/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Jung HS; Lu Z; Shepherd A; Wright T (2015) Simulation of the SuperSAR Multi-Azimuth Synthetic Aperture Radar Imaging System for Precise Measurement of Three-Dimensional Earth Surface Displacement. <i>IEEE Transactions on Geoscience and Remote Sensing</i>, <b>53</b> (11), pp. 6196-6206. <a href="http://dx.doi.org/10.1109/TGRS.2015.2435776"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90297/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Kapadia ZZ; Spracklen DV; Arnold SR; Borman DJ; Mann GW; Pringle KJ; Monks SA; Reddington CL; Benduhn F; Rap A (2015) Impacts of aviation fuel sulfur content on climate and human health. <i>Atmospheric Chemistry and Physics Discussions</i>, <b>15</b> , pp. 18921-18961. <a href="http://dx.doi.org/10.5194/acpd-15-18921-2015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/140786/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Koenig SJ; Dolan AM; de Boer B; Stone EJ; Hill DJ; DeConto RM; Abe-Ouchi A; Lunt DJ; Pollard D; Quiquet A (2015) Ice sheet model dependency of the simulated Greenland Ice Sheet in the mid-Pliocene. <i>Climate of the Past</i>, <b>11</b> (3), pp. 369-381. <a href="http://dx.doi.org/10.5194/cp-11-369-2015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Leeson AA; Shepherd A; Briggs K; Howat I; Fettweis X; Morlighem M; Rignot E (2015) Supraglacial lakes on the Greenland ice sheet advance inland under warming climate. <i>Nature Climate Change</i>, <b>5</b> (1), pp. 51-55. <a href="http://dx.doi.org/10.1038/nclimate2463"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/86063/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Levinsen JF; Khvorostovsky K; Ticconi F; Shepherd A; Forsberg R; Sorensen LS; Muir A; Pie N; Felikson D; Flament T (2015) ESA ice sheet CCI: derivation of the optimal method for surface elevation change detection of the Greenland ice sheet - round robin results. <i>International Journal of Remote Sensing</i>, <b>36</b> (2), pp. 551-573. <a href="http://dx.doi.org/10.1080/01431161.2014.999385"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/92411/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Maycock AC; Hitchcock P (2015) Do split and displacement sudden stratospheric warmings have different annular mode signatures?. <i>Geophysical Research Letters</i>, <b>42</b> (24), pp. 10943-10951. <a href="http://dx.doi.org/10.1002/2015GL066754"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/92680/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Maycock AC; Ineson S; Gray LJ; Scaife AA; Anstey JA; Lockwood M; Butchart N; Hardiman SC; Mitchell DM; Osprey SM (2015) Possible impacts of a future grand solar minimum on climate: Stratospheric and global circulation changes. <i>Journal of Geophysical Research: Atmospheres</i>, <b>120</b> (18), pp. 9043-9058. <a href="http://dx.doi.org/10.1002/2014JD022022"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90156/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Murray BJ; Salzmann CG; Heymsfield AJ; Dobbie S; Neely RR; Cox CJ (2015) Trigonal ice crystals in Earth’s atmosphere. <i>Bulletin of the American Meteorological Society</i>, <b>96</b> (9), pp. 1519-1531. <a href="http://dx.doi.org/10.1175/BAMS-D-13-00128.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/86859/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Nowack PJ; Abraham NL; Maycock AC; Braesicke P; Gregory JM; Joshi MM; Osprey A; Pyle JA (2015) A large ozone-circulation feedback and its implications for global warming assessments. <i>Nature Climate Change</i>, <b>5</b> (1), pp. 41-45. <a href="http://dx.doi.org/10.1038/NCLIMATE2451"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/92677/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Parkes B; Challinor AJ; Nicklin K (2015) Crop failure rates in a geoengineered climate: impact of climate change and marine cloud brightening. <i>Environmental Research Letters</i>, <b>10</b> (8), 084003. <a href="http://dx.doi.org/10.1088/1748-9326/10/8/084003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/94893/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Paul F; Bolch T; Kääb A; Nagler T; Nuth C; Scharrer K; Shepherd A; Strozzi T; Ticconi F; Bhambri R (2015) The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. <i>Remote Sensing of Environment</i>, <b>162</b> , pp. 408-426. <a href="http://dx.doi.org/10.1016/j.rse.2013.07.043"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/92410/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Rap A; Richards NAD; Forster PM; Monks S; Arnold SR; Chipperfield M (2015) Satellite constraint on the tropospheric ozone radiative effect. <i>Geophysical Research Letters</i>, <b>42</b> (12), pp. 5074-5081. <a href="http://dx.doi.org/10.1002/2015GL064037"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/88325/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Rap A; Spracklen DV; Mercado L; Reddington CL; Haywood JM; Ellis RJ; Phillips OL; Artaxo P; Bonal D; Restrepo Coupe N (2015) Fires increase Amazon forest productivity through increases in diffuse radiation. <i>Geophysical Research Letters</i>, . <a href="http://dx.doi.org/10.1002/2015GL063719"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/87373/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Regayre LA; Pringle KJ; Lee LA; Rap A; Browse J; Mann GW; Reddington CL; Carslaw KS; Booth BBB; Woodhouse MT (2015) The Climatic Importance of Uncertainties in Regional Aerosol-Cloud Radiative Forcings over Recent Decades. <i>Journal of Climate</i>, <b>28</b> (17), pp. 6589-6607. <a href="http://dx.doi.org/10.1175/JCLI-D-15-0127.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/91753/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Scott CE; Spracklen DV; Pierce JR; Riipinen I; D'Andrea SD; Rap A; Carslaw KS; Forster PM; Artaxo P; Kulmala M (2015) Impact of gas-to-particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol. <i>Atmospheric Chemistry and Physics</i>, <b>15</b> , pp. 12989-13001. <a href="http://dx.doi.org/10.5194/acp-15-12989-2015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/92749/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Tilling RL; Ridout A; Shepherd A; Wingham DJ (2015) Increased Arctic sea ice volume after anomalously low melting in 2013. <i>Nature Geoscience</i>, <b>8</b> (8), pp. 643-646. <a href="http://dx.doi.org/10.1038/NGEO2489"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/92413/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Tindall JC; Haywood AM (2015) Modeling oxygen isotopes in the Pliocene: Large-scale features over the land and ocean. <i>Paleoceanography</i>, <b>30</b> (9), pp. 1183-1201. <a href="http://dx.doi.org/10.1002/2014PA002774"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90277/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Whitfield S; Benton T; Dallimer M; Firbank L; Poppy GM; Sallu SM; Stringer LC (2015) Sustainability spaces for complex agri-food systems. <i>Food Security</i>, <b>7</b> (6), pp. 1291-1297. <a href="http://dx.doi.org/10.1007/s12571-015-0512-3"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/91000/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Whitfield S; Dixon J; Mulenga B; Ngoma H (2015) Conceptualising farming systems for agricultural development research: cases from Eastern and Southern Africa. <i>Agricultural Systems</i>, <b>133</b> , pp. 54-62. <a href="http://dx.doi.org/10.1016/j.agsy.2014.09.005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/84106/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Whitfield S; Dougill A; Dyer J; Kalaba F; Leventon J; Stringer L (2015) Critical reflection on knowledge and narratives of conservation agriculture. <i>Geoforum</i>, <b>60</b> , pp. 133-142. <a href="http://dx.doi.org/10.1016/j.geoforum.2015.01.016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/84105/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wolstencroft M; King MA; Whitehouse PL; Bentley MJ; Nield GA; King EC; McMillan M; Shepherd A; Barletta V; Bordoni A (2015) Uplift rates from a new high-density GPS network in Palmer Land indicate significant late Holocene ice loss in the southwestern Weddell Sea. <i>Geophysical Journal International</i>, <b>203</b> (1), pp. 737-754. <a href="http://dx.doi.org/10.1093/gji/ggv327"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90944/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>

2014

Karlen DL; Galdos MV; Rabelo SC; Franco HCJ; Bonomi A; Li J; Li SZ; Tumuluru JS; Ovard L (2014) Selected Global Examples of Cellulosic Cropping System Trends. <i>Cellulosic Energy Cropping Systems</i>, 9781119991946, pp. 345-363. <a href="http://dx.doi.org/10.1002/9781118676332.ch19"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Gollany H; Titus B; Scott DA; Asbjornsen H; Resh S; Chimner R; Kaczmarek AD; Leite L; Ferreira A; Rod K (2014) <i>Biogeochemical research priorities for sustainable bioenergy feedstock development in Pan-America</i> RCN Conference on Pan American Biofuels and Bioenergy Sustainability 2014, pp. 319-331.
Banerjee A; Archibald AT; Maycock AC; Telford P; Abraham NL; Yang X; Braesicke P; Pyle JA (2014) Lightning NOx, a key chemistry-climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity. <i>Atmospheric Chemistry and Physics</i>, <b>14</b> (18), pp. 9871-9881. <a href="http://dx.doi.org/10.5194/acp-14-9871-2014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/92678/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Bradshaw CD; Lunt DJ; Flecker R; Salzmann U; Pound MJ; Haywood AM; Eronen JT (2014) The relative roles of CO2 and palaeogeography in determining late Miocene climate: results from a terrestrial model-data comparison (vol 8, pg 1257, 2012). <i>CLIMATE OF THE PAST</i>, <b>10</b> (1), pp. 199-206. <a href="http://dx.doi.org/10.5194/cp-10-199-2014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80156/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Cook CP; Van De Flierdt T; Hill DJ; Dolan AM; Williams T; Hemming SR; Pierce EL; Escutia C; Gonzales JJ; Harwood D (2014) Sea surface temperature control on the distribution of far-traveled Southern Ocean ice-rafted detritus during the Pliocene. <i>Paleoceanography</i>, <b>29</b> (6), pp. 533-548. <a href="http://dx.doi.org/10.1002/2014PA002625"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80164/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Del Grosso S; Smith P; Galdos M; Hastings A; Parton W (2014) Sustainable energy crop production. <i>Current Opinion in Environmental Sustainability</i>, <b>9-10</b> , pp. 20-25. <a href="http://dx.doi.org/10.1016/j.cosust.2014.07.007"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Falloon P; Challinor A; Dessai S; Hoang L; Johnson J; Koehler A-K (2014) Ensembles and uncertainty in climate change impacts. <i>Frontiers in Environmental Science</i>, <b>2</b> , 33. <a href="http://dx.doi.org/10.3389/fenvs.2014.00033"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80076/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Goldobin DS; Brilliantov NV; Levesley J; Lovell MA; Rochelle CA; Jackson PD; Rees JG; Haywood AM; Hunter SJ (2014) Non-Fickian diffusion and the accumulation of methane bubbles in deep-water sediments. <i>European Physical Journal E</i>, <b>37</b> (5), 45. <a href="http://dx.doi.org/10.1140/epje/i2014-14045-x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80313/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Herbert RJ; Murray BJ; Whale TF; Dobbie SJ; Atkinson JD (2014) Representing time-dependent freezing behaviour in immersion mode ice nucleation. <i>Atmospheric Chemistry and Physics</i>, <b>14</b> (16), pp. 8501-8520. <a href="http://dx.doi.org/10.5194/acp-14-8501-2014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82612/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hill DJ; Haywood AM; Lunt DJ; Hunter SJ; Bragg FJ; Contoux C; Stepanek C; Sohl L; Rosenbloom NA; Chan WL (2014) Evaluating the dominant components of warming in Pliocene climate simulations. <i>Climate of the Past</i>, <b>10</b> (1), pp. 79-90. <a href="http://dx.doi.org/10.5194/cp-10-79-2014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80157/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Howell FW; Haywood AM; Dolan AM; Dowsett HJ; Francis JE; Hill DJ; Pickering SJ; Pope JO; Salzmann U; Wade BS (2014) Can uncertainties in sea ice albedo reconcile patterns of data-model discord for the Pliocene and 20th/21st centuries?. <i>Geophysical Research Letters</i>, <b>41</b> (6), pp. 2011-2018. <a href="http://dx.doi.org/10.1002/2013GL058872"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80158/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic RF; Valdes PJ; Flecker R; Gutjahr M (2014) Modelling global-scale climate impacts of the late Miocene Messinian Salinity Crisis. <i>Climate of the Past</i>, <b>10</b> (2), pp. 607-622. <a href="http://dx.doi.org/10.5194/cp-10-607-2014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80166/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic RF; Valdes PJ; Gregoire LJ; Flecker R; Gutjahr M (2014) Sensitivity of modern climate to the presence, strength and salinity of Mediterranean-Atlantic exchange in a global General Circulation Model. <i>Climate Dynamics: observational, theoretical and computational research on the climate system</i>, <b>42</b> (3-4), pp. 859-877. <a href="http://dx.doi.org/10.1007/s00382-013-1680-5"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80225/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Maycock AC; Joshi MM; Shine KP; Davis SM; Rosenlof KH (2014) The potential impact of changes in lower stratospheric water vapour on stratospheric temperatures over the past 30 years. <i>QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY</i>, <b>140</b> (684), pp. 2176-2185. <a href="http://dx.doi.org/10.1002/qj.2287"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/92679/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
McMillan M; Shepherd A; Gourmelen N; Dehecq A; Leeson A; Ridout A; Flament T; Hogg A; Gilbert L; Benham T (2014) Rapid dynamic activation of a marine-based Arctic ice cap. <i>Geophysical Research Letters</i>, <b>41</b> , pp. 8902-8909. <a href="http://dx.doi.org/10.1002/2014GL062255"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90946/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
McMillan M; Shepherd A; Sundal A; Briggs K; Muir A; Ridout A; Hogg A; Wingham D (2014) Increased ice losses from Antarctica detected by CryoSat-2. <i>Geophysical Research Letters</i>, <b>41</b> (11), pp. 3899-3905. <a href="http://dx.doi.org/10.1002/2014GL060111"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80208/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Mello FFC; Cerri CEP; Davies CA; Holbrook NM; Paustian K; Maia SMF; Galdos MV; Bernoux M; Cerri CC (2014) Payback time for soil carbon and sugar-cane ethanol. <i>Nature Climate Change</i>, <b>4</b> (7), pp. 605-609. <a href="http://dx.doi.org/10.1038/nclimate2239"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Pound MJ; Tindall J; Pickering SJ; Haywood AM; Dowsett HJ; Salzmann U (2014) Late Pliocene lakes and soils: a global data set for the analysis of climate feedbacks in a warmer world. <i>Climate of the Past</i>, <b>10</b> (1), pp. 167-180. <a href="http://dx.doi.org/10.5194/cp-10-167-2014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80024/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Prescott CL; Haywood AM; Dolan AM; Hunter SJ; Pope JO; Pickering SJ (2014) Assessing orbitally-forced interglacial climate variability during the mid-Pliocene Warm Period. <i>Earth and Planetary Science Letters</i>, <b>400</b> , pp. 261-271. <a href="http://dx.doi.org/10.1016/j.epsl.2014.05.030"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80067/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Regayre LA; Pringle KJ; Booth BBB; Lee LA; Mann GW; Browse J; Woodhouse MT; Rap A; Reddington CL; Carslaw KS (2014) Uncertainty in the magnitude of aerosol-cloud radiative forcing over recent decades. <i>Geophysical Research Letters</i>, <b>41</b> (24), pp. 9040-9049. <a href="http://dx.doi.org/10.1002/2014GL062029"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/87376/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Saupe EE; Hendricks JR; Portell RW; Dowsett HJ; Haywood A; Hunter SJ; Lieberman BS (2014) Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. <i>Proceedings of the Royal Society B: Biological Sciences</i>, <b>281</b> (1795). <a href="http://dx.doi.org/10.1098/rspb.2014.1995"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82681/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Scott CE; Rap A; Spracklen DV; Forster PM; Carslaw KS; Mann GW; Pringle KJ; Kivekas N; Kulmala M; Lihavainen H (2014) The direct and indirect radiative effects of biogenic secondary organic aerosol. <i>Atmospheric Chemistry and Physics</i>, <b>14</b> (1), pp. 447-470. <a href="http://dx.doi.org/10.5194/acp-14-447-2014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/77861/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Smith CJ; Forster PM; Crook R (2014) Global analysis of photovoltaic energy output enhanced by phase change material cooling. <i>Applied Energy</i>, <b>126</b> , pp. 21-28. <a href="http://dx.doi.org/10.1016/j.apenergy.2014.03.083"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/81538/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Walter A; Galdos MV; Scarpare FV; Leal MRLV; Seabra JEA; da Cunha MP; Picoli MCA; de Oliveira COF (2014) Brazilian sugarcane ethanol: developments so far and challenges for the future. <i>Wiley Interdisciplinary Reviews: Energy and Environment</i>, <b>3</b> (1), pp. 70-92. <a href="http://dx.doi.org/10.1002/wene.87"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Whitfield S (2014) Weighing up the risks: the challenge of studying ‘risk’ in empirical research. <i>IDS Bulletin</i>, <b>45</b> (2-3), pp. 7-17. <a href="http://dx.doi.org/10.1111/1759-5436.12079"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82384/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>

2013

Dunkley-Jones T; Ivanovic RF; Ridgwell A; Lunt D; Maslin M; Valdes PJ; Flecker R (2013) Methane Hydrate Instability: A View from the Palaeogene. <i>In:</i> McGuire B; Maslin M eds. <i>Climate Forcing of Geological Hazards</i>, Chichester, West Sussex, UK: Wiley-Blackwell, pp. 278-304. <a href="http://dx.doi.org/10.1002/9781118482698.ch12"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Richardson M; Chipperfield M (2013) <i>Improvement of TOMCAT-GLOMAP File Access with User Defined MPI Datatypes</i> CUG 2013 Proceedings. <a href="http://eprints.whiterose.ac.uk/95820/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Atkinson JD; Murray BJ; Woodhouse MT; Whale TF; Baustian KJ; Carslaw KS; Dobbie S; O'Sullivan D; Malkin TL (2013) Erratum: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds (Nature (2013) 498 (355-358) DOI: 10.1038/nature12278). <i>Nature</i>, <b>500</b> (7463), pp. 490. <a href="http://dx.doi.org/10.1038/nature12384"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Atkinson JD; Murray BJ; Woodhouse MT; Whale TF; Baustian KJ; Carslaw KS; Dobbie S; O'Sullivan D; Malkin TL (2013) Erratum: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. <i>Nature</i>, . <a href="http://dx.doi.org/10.1038/nature12384"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Atkinson JD; Murray BJ; Woodhouse MT; Whale TF; Baustian KJ; Carslaw KS; Dobbie S; O'Sullivan D; Malkin TL (2013) The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. <i>Nature</i>, <b>498</b> (7454), pp. 355-358. <a href="http://dx.doi.org/10.1038/nature12278"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76495/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Bekki S; Rap A; Poulain V; Dhomse S; Marchand M; Lefevre F; Forster PM; Szopa S; Chipperfield MP (2013) Climate impact of stratospheric ozone recovery. <i>GEOPHYSICAL RESEARCH LETTERS</i>, <b>40</b> (11), pp. 2796-2800. <a href="http://dx.doi.org/10.1002/grl.50358"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76979/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Cardoso TDF; Cavalett O; Chagas MF; Morais ERD; Carvalho JLN; Franco HCJ; Galdos MV; Scarpare FV; Braunbeck OA; Cortez LAB (2013) Technical and economic assessment of trash recovery in the sugarcane bioenergy production system. <i>Scientia Agricola</i>, <b>70</b> (5), pp. 353-360. <a href="http://dx.doi.org/10.1590/S0103-90162013000500010"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Carslaw KS; Lee LA; Reddington CL; Pringle KJ; Rap A; Forster PM; Mann GW; Spracklen DV; Woodhouse MT; Regayre LA (2013) Large contribution of natural aerosols to uncertainty in indirect forcing. <i>Nature</i>, <b>503</b> (7474), pp. 67-71. <a href="http://eprints.whiterose.ac.uk/81909/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Cerri CEP; Galdos MV; Carvalho JLN; Feigl BJ; Cerri CC (2013) Quantifying soil carbon stocks and greenhouse gas fluxes in the sugarcane agrosystem: point of view. <i>Scientia Agricola</i>, <b>70</b> (5), pp. 361-368. <a href="http://dx.doi.org/10.1590/S0103-90162013000500011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Clark NA; Williams M; Hill DJ; Quilty PG; Smellie JL; Zalasiewicz J; Leng MJ; Ellis MA (2013) Fossil proxies of near-shore sea surface temperatures and seasonality from the late Neogene Antarctic shelf. <i>Naturwissenschaften</i>, <b>100</b> (8), pp. 699-722. <a href="http://dx.doi.org/10.1007/s00114-013-1075-9"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80195/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Couce E; Irvine PJ; Gregorie LJ; Ridgwell A; Hendy EJ (2013) Tropical coral reef habitat in a geoengineered, high-CO2 world. <i>Geophysical Research Letters</i>, <b>40</b> (9), pp. 1799-1804. <a href="http://dx.doi.org/10.1002/grl.50340"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dowsett HJ; Foley KM; Stoll DK; Chandler MA; Sohl LE; Bentsen M; Otto-Bliesner BL; Bragg FJ; Chan W-L; Contoux C (2013) Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison. <i>Scientific Reports</i>, <b>3</b> , 2013. <a href="http://dx.doi.org/10.1038/srep02013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/95857/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dunne EM; Almeida J; Kürten A; Rap A; Carslaw KS (2013) The radiative effect of ion-induced inorganic nucleation in the free troposphere. <i>AIP Conference Proceedings</i>, <b>1527</b> , pp. 314-317. <a href="http://dx.doi.org/10.1063/1.4803266"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dunne EM; Mikkonen S; Rap A; Korhonen H (2013) Trends in wind speeds affect atmospheric aerosol. <i>AIP Conference Proceedings</i>, <b>1527</b> , pp. 508-510. <a href="http://dx.doi.org/10.1063/1.4803317"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Galdos M; Cavalett O; Seabra JEA; Nogueira LAH; Bonomi A (2013) Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. <i>Applied Energy</i>, <b>104</b> , pp. 576-582. <a href="http://dx.doi.org/10.1016/j.apenergy.2012.11.002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Dolan AM; Pickering SJ; Dowsett HJ; McClymont EL; Prescott CL; Salzmann U; Hill DJ; Hunter SJ; Lunt DJ (2013) On the identification of a Pliocene time slice for data-model comparison. <i>Philos Trans A Math Phys Eng Sci</i>, <b>371</b> (2001), pp. 20120515. <a href="http://dx.doi.org/10.1098/rsta.2012.0515"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80315/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Haywood AM; Hill DJ; Dolan AM; Otto-Bliesner BL; Bragg F; Chan WL; Chandler MA; Contoux C; Dowsett HJ; Jost A (2013) Large-scale features of Pliocene climate: Results from the Pliocene Model Intercomparison Project. <i>Climate of the Past</i>, <b>9</b> (1), pp. 191-209. <a href="http://dx.doi.org/10.5194/cp-9-191-2013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/141628/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hill DJ; Haywood AM; Valdes PJ; Francis JE; Lunt DJ; Wade BS; Bowman VC (2013) Paleogeographic controls on the onset of the Antarctic circumpolar current. <i>Geophysical Research Letters</i>, <b>40</b> (19), pp. 5199-5204. <a href="http://dx.doi.org/10.1002/grl.50941"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80159/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Horseman AM; Richardson T; Boardman AT; Tych W; Timmis R; MacKenzie AR (2013) Calibrated digital images of Campbell–Stokes recorder card archives for direct solar irradiance studies. <i>Atmospheric Measurement Techniques</i>, <b>6</b> (5), pp. 1371-1379. <a href="http://dx.doi.org/10.5194/amt-6-1371-2013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hunter SJ; Goldobin DS; Haywood AM; Ridgvvell A; Rees JG (2013) Sensitivity of the global submarine Hydrate inventory to scenarios of future climate change (vol 367, pg 105, 2013). <i>EARTH AND PLANETARY SCIENCE LETTERS</i>, <b>375</b> , pp. 450-450. <a href="http://dx.doi.org/10.1016/j.epsl.2013.07.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hunter SJ; Goldobin DS; Haywood AM; Ridgwell A; Rees JG (2013) Sensitivity of the global submarine hydrate inventory to scenarios of future climate change. <i>Earth and Planetary Science Letters</i>, <b>367</b> , pp. 105-115. <a href="http://dx.doi.org/10.1016/j.epsl.2013.02.017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hunter SJ; Goldobin DS; Haywood AM; Ridgwell A; Rees JG (2013) Erratum to “Sensitivity of the global submarine Hydrate inventory to scenarios of future climate change”. <i>Earth and Planetary Science Letters</i>, <b>375</b> , pp. 450-450. <a href="http://dx.doi.org/10.1016/j.epsl.2013.07.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hunter SJ; Haywood AM; Valdes PJ; Francis JE; Pound MJ (2013) Modelling equable climates of the Late Cretaceous: Can new boundary conditions resolve data-model discrepancies?. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>392</b> , pp. 41-51. <a href="http://dx.doi.org/10.1016/j.palaeo.2013.08.009"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80053/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Irvine PJ; Gregoire LJ; Lunt DJ; Valdes PJ (2013) An efficient method to generate a perturbed parameter ensemble of a fully coupled AOGCM without flux-adjustment. <i>Geoscientific Model Development</i>, <b>6</b> (5), pp. 1447-1462. <a href="http://dx.doi.org/10.5194/gmd-6-1447-2013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Ivanovic RF; Flecker R; Gutjahr M; Valdes PJ (2013) First Nd isotope record of Mediterranean–Atlantic water exchange through the Moroccan Rifian Corridor during the Messinian Salinity Crisis. <i>Earth and Planetary Science Letters</i>, <b>368</b> , pp. 163-174. <a href="http://dx.doi.org/10.1016/j.epsl.2013.03.010"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/89969/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic RF; Valdes PJ; Flecker R; Gregoire LJ; Gutjahr M (2013) The parameterisation of Mediterranean–Atlantic water exchange in the Hadley Centre model HadCM3, and its effect on modelled North Atlantic climate. <i>Ocean Modelling</i>, <b>62</b> , pp. 11-16. <a href="http://dx.doi.org/10.1016/j.ocemod.2012.11.002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/89970/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Koehler A-K; Challinor AJ; Hawkins E; Asseng S (2013) Influences of increasing temperature on Indian wheat: quantifying limits to predictability. <i>Environmental Research Letters</i>, <b>8</b> (3), pp. 034016. <a href="http://dx.doi.org/10.1088/1748-9326/8/3/034016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/77940/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Kunz A; Müller R; Homonnai V; Jánosi IM; Hurst D; Rap A; Forster PM; Rohrer F; Spelten N; Riese M (2013) Extending water vapor trend observations over Boulder into the tropopause region: Trend uncertainties and resulting radiative forcing. <i>Journal of Geophysical Research D: Atmospheres</i>, <b>118</b> (11), pp. 11,269-11,284. <a href="http://dx.doi.org/10.1002/jgrd.50831"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76976/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Leal MRLV; Galdos MV; Scarpare FV; Seabra JEA; Walter A; Oliveira COF (2013) Sugarcane straw availability, quality, recovery and energy use: A literature review. <i>Biomass and Bioenergy</i>, <b>53</b> , pp. 11-19. <a href="http://dx.doi.org/10.1016/j.biombioe.2013.03.007"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Leeson AA; Shepherd A; Sundal AV; Johansson AM; Selmes N; Briggs K; Hogg A; Fettweis X (2013) A comparison of supraglacial lake observations derived from MODIS imagery at the western margin of the Greenland ice sheet. <i>Journal of Glaciology</i>, <b>59</b> (218), pp. 1179-1188. <a href="http://dx.doi.org/10.3189/2013JoG13J064"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/86065/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Levinsky I; Araujo MB; Nogues-Bravo D; Haywood AM; Valdes PJ; Rahbek C (2013) Climate envelope models suggest spatio-temporal co-occurrence of refugia of African birds and mammals. <i>GLOBAL ECOLOGY AND BIOGEOGRAPHY</i>, <b>22</b> (3), pp. 351-363. <a href="http://dx.doi.org/10.1111/geb.12045"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Ridgwell A; Sagoo N; Stone EJ; Valdes P; Elderfield H; Pancost R; Foster GL; Haywood A; Kiehl J (2013) Warm climates of the past-a lesson for the future?. <i>Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences</i>, <b>371</b> (2001), 20130146. <a href="http://dx.doi.org/10.1098/rsta.2013.0146"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80314/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Maia SMF; Carvalho JLN; Cerri CEP; Lal R; Bernoux M; Galdos MV; Cerri CC (2013) Contrasting approaches for estimating soil carbon changes in Amazon and Cerrado biomes. <i>Soil and Tillage Research</i>, <b>133</b> , pp. 75-84. <a href="http://dx.doi.org/10.1016/j.still.2013.06.002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Maycock AC; Joshi MM; Shine KP; Scaife AA (2013) The Circulation Response to Idealized Changes in Stratospheric Water Vapor. <i>Journal of Climate</i>, <b>26</b> (2), pp. 545-561. <a href="http://dx.doi.org/10.1175/JCLI-D-12-00155.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Mcmillan M; Shepherd A; Corr H; Ridout A; Laxon S; Cullen R (2013) Three-dimensional mapping by CryoSat-2 of subglacial lake volume changes. <i>Geophysical Research Letters</i>, <b>40</b> (16), pp. 4321-4327. <a href="http://dx.doi.org/10.1002/grl.50689"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76541/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Monge-Sanz BM; Chipperfield MP; Untch A; Morcrette JJ; Rap A; Simmons AJ (2013) On the uses of a new linear scheme for stratospheric methane in global models: Water source, transport tracer and radiative forcing. <i>Atmospheric Chemistry and Physics</i>, <b>13</b> (18), pp. 9641-9660. <a href="http://dx.doi.org/10.5194/acp-13-9641-2013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76980/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Park JW; Gourmelen N; Shepherd A; Kim SW; Vaughan DG; Wingham DJ (2013) Sustained retreat of the Pine Island Glacier. <i>Geophysical Research Letters</i>, <b>40</b> (10), pp. 2137-2142. <a href="http://dx.doi.org/10.1002/grl.50379"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Rap A; Scott CE; Spracklen DV; Forster PM; Carslaw KS; Schmidt A; Mann G; Bellouin N (2013) Natural aerosol direct and indirect radiative effects. <i>Geophysical Research Letters</i>, <b>40</b> (12), pp. 3297-3301. <a href="http://dx.doi.org/10.1002/grl.50441"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76978/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Richards NAD; Arnold SR; Chipperfield MP; Rap A; Monks SA; Hollaway MJ; Miles G; Siddans R (2013) The Mediterranean summertime ozone maximum: Global emission sensitivities and radiative impacts. <i>Atmospheric Chemistry and Physics</i>, <b>13</b> (5), pp. 2331-2345. <a href="http://dx.doi.org/10.5194/acp-13-2331-2013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76981/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Russon T; Tudhope AW; Hegerl GC; Collins M; Tindall J (2013) Inter-annual tropical Pacific climate variability in an isotope-enabled CGCM: Implications for interpreting coral stable oxygen isotope records of ENSO. <i>Climate of the Past</i>, <b>9</b> (4), pp. 1543-1557. <a href="http://dx.doi.org/10.5194/cp-9-1543-2013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Sagoo N; Valdes P; Flecker R; Gregoire LJ (2013) The Early Eocene equable climate problem: can perturbations of climate model parameters identify possible solutions?. <i>Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences</i>, <b>371</b> (2001). <a href="http://dx.doi.org/10.1098/rsta.2013.0123"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Salzmann U; Dolan AM; Haywood AM; Chan W-L; Voss J; Hill DJ; Abe-Ouchi A; Otto-Bliesner B; Bragg FJ; Chandler MA (2013) Challenges in reconstructing terrestrial warming of the pliocene revealed by data-model discord. <i>Nature Climate Change</i>, <b>3</b> , pp. 969-974. <a href="http://dx.doi.org/10.1038/nclimate2008"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80045/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Sime LC; Risi C; Tindall JC; Sjolte J; Wolff EW; Masson-Delmotte V; Capron E (2013) Warm climate isotopic simulations: What do we learn about interglacial signals in Greenland ice cores?. <i>Quaternary Science Reviews</i>, <b>67</b> , pp. 59-80. <a href="http://dx.doi.org/10.1016/j.quascirev.2013.01.009"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Spracklen DV; Rap A (2013) Natural aerosol–climate feedbacks suppressed by anthropogenic aerosol. <i>Geophysical Research Letters</i>, <b>40</b> (19), pp. 5316-5319. <a href="http://dx.doi.org/10.1002/2013GL057966"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76977/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Sundal AV; Shepherd A; van den Broeke M; Van Angelen J; Gourmelen N; Park J (2013) Controls on short-term variations in Greenland glacier dynamics. <i>Journal of Glaciology</i>, <b>59</b> (217), pp. 883-892. <a href="http://dx.doi.org/10.3189/2013JoG13J019"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Ticconi F; Levinsen JF; Khvorostovsky K; Forsberg R; Shepherd A; IEEE (2013) PRELIMINARY RESULTS OF THE ICE_SHEET_CCI ROUND ROBIN ACTIVITY ON THE ESTIMATION OF SURFACE ELEVATION CHANGES. <i>2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)</i>, , pp. 244-247. <a href="http://dx.doi.org/10.1109/IGARSS.2013.6721137"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Vermeulen SJ; Challinor AJ; Thornton PK; Campbell BM; Eriyagama N; Vervoort JM; Kinyangi J; Jarvis A; Läderach P; Ramirez-Villegas J (2013) Addressing uncertainty in adaptation planning for agriculture. <i>Proc Natl Acad Sci U S A</i>, <b>110</b> (21), pp. 8357-8362. <a href="http://dx.doi.org/10.1073/pnas.1219441110"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/78037/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Whitfield S (2013) Uncertainty, ignorance and ambiguity in crop modelling for African agricultural adaptation. <i>Climatic Change</i>, <b>120</b> (1), pp. 249-256. <a href="http://dx.doi.org/10.1007/s10584-013-0795-3"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Zhang R; Yan Q; Zhang ZS; Jiang D; Otto-Bliesner BL; Haywood AM; Hill DJ; Dolan AM; Stepanek C; Lohmann G (2013) Mid-Pliocene East Asian monsoon climate simulated in the PlioMIP. <i>Climate of the Past</i>, <b>9</b> (5), pp. 2085-2099. <a href="http://dx.doi.org/10.5194/cp-9-2085-2013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Zhang ZS; Nisancioglu KH; Chandler MA; Haywood AM; Otto-Bliesner BL; Ramstein G; Stepanek C; Abe-Ouchi A; Chan WL; Bragg FJ (2013) Mid-pliocene Atlantic Meridional Overturning Circulation not unlike modern. <i>Climate of the Past</i>, <b>9</b> (4), pp. 1495-1504. <a href="http://dx.doi.org/10.5194/cp-9-1495-2013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>

2012 & previous

Williams M; Haywood AM; Gregory J; Schmidt D (2007) <i>Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies</i>. The Geological Society, London.
Chylek P; Videen G; Tso W; Dobbie S; Dobbie JS; Geldart DJW (2000) Effective medium approximations for heterogeneous particles. <i>In:</i> Mishchenko MI; Hovenier JW; Travis LD eds. <i>Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications</i>, Academic Press, pp. 274-307.
Francis J; Haywood A; Hill D; Markwick P; McDonald C (2012) Environmental change in the geological record. <i>The SAGE Handbook of Environmental Change: Volume 1</i>, pp. 165-180. <a href="http://dx.doi.org/10.4135/9781446253045.n8"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Francis JE; Haywood AM; Hill DJ; Markwick PJ; McDonald C (2012) Environmental Change in the Gological Record. <i>In:</i> Matthews et al. JA ed. <i>The SAGE Handbook of Environmental Change</i>, 1, SAGE Publications Ltd, pp. 160-180.
Galdos MV; Cerri CC; Bernoux M; Cerri CEP (2009) Ethanol production from sugarcane and soil quality. <i>Soil Quality and Biofuel Production</i>, pp. 137-150.
Haywood AM (2009) Pliocene Climates. <i>In:</i> Gornitz V ed. <i>Encyclopedia of Paleoclimatology and Ancient Environments</i>, Earth Sciences Series, Springer, .
Haywood AM; Smellie JL; Ashworth A; Cantrill DJ; Florindo F; Hambrey MJ; Hill DJ; Hillenbrand CD; Hunter SJ; Larter RD (2008) The Middle Miocene to Pliocene record of Antarctica and the Southern Ocean. <i>In:</i> Florindo F; Siegert M eds. <i>Antarctic Climate Evolution</i>, Developments in Earth & Environmental Science, 8, Elsevier, .
Haywood AM; Valdes PJ; Hill DJ; Williams M (2007) The mid Pliocene Warm Period: a test-bed for integrating data and models. <i>In:</i> Williams M; Haywood AM; Gregory J; Schmidt D eds. <i>Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies</i>, The Micropalaeontological Society, Special Publication, The Geological Society, London, pp. 443-458.
Hill DJ; Haywood AM; Hindmarsh RCA; Valdes PJ (2007) Characterising ice sheets during the mid Pliocene: evidence from data and models. <i>In:</i> Williams M; Haywood AM; Gregory J; Schmidt D eds. <i>Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies</i>, The Micropalaeontological Society, Special Publication, The Geological Society, London, pp. 517-538.
Rap A; Elliott L; Ingham DB; Lesnic D; Wen X (2005) Boundary element methods for inverse convection-diffusion problems. <i>In:</i> Chen K ed. <i>Advances in Boundary Integral Methods - Proceedings of the Fifth UK Conference on Boundary Integral Methods</i>, The University of Liverpool, pp. 242-251.
Rap A; Elliott L; Ingham DB; Lesnic D; Wen X (2003) The Cauchy problem for the steady-state convection-diffusion equation using BEM. <i>In:</i> Gallego R; Aliabadi MH eds. <i>Advances in Boundary Element Techniques IV</i>, Queen Mary, University of London, pp. 281-286.
Rap A; Elliott L; Ingham DB; Lesnic D; Wen X (2003) The Cauchy problem for the steady-state convection-diffusion equation using a regularised DRBEM. <i>In:</i> Amini S ed. <i>Fourth UK Conference on Boundary Integral Methods</i>, Salford University, UK, pp. 1-10.
Williams M; Haywood AM; Gregory J; Schmidt D (2007) Deep time perspectives on climate change: an introduction. <i>In:</i> Williams; M; Haywood; M A; Gregory; J F; Schmidt; N D eds. <i>Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies</i>, The Micropalaeontological Society, Special Publication, The Geological Society, London, pp. 1-3.
Dobbie JS; Li JN; Harvey R; Chylek P (2001) <i>GCM radiative forcing of sea salt aerosols</i> IRS 2000: CURRENT PROBLEMS IN ATMOSPHERIC RADIATION, pp. 1255-1258.
Dobbie S; Dobbie JS (2003) <i>Inhomogeneous radiative properties of cirrus clouds</i> Royal Meteorological Society Book of Abstracts, RMS Conference.
Dobbie S; Dobbie JS (2003) <i>The dynamical and microphysical response of cirrus clouds to Monte-Carlo radiative transfer</i> Geophysical Research Abstracts, European Geophysical Society, pp. pp.445.
Dobbie S; Dobbie JS (2002) <i>On the influence of the plane-parallel approximation on cloud evolution</i> Proceedings of the EGS XXVII General Assembly, Nice, France.
Dobbie S; Dobbie JS (2004) <i>Coupled 3D radiation and LEM cloud resolving model simulations</i> Geophysical Research Abstracts, European Geophysical Union.
Dobbie S; Dobbie JS (2003) <i>The dynamical and microphysical response of cirrus clouds to Monte Carlo radiative transfer</i> IUGG, June 2003.
Dobbie S; Dobbie JS; Jonas PR (2000) <i>Radiative influences on the structure of cirrus clouds using a large eddy simulation (LES) model</i> Proceedings of the ICCP Conference, Reno, USA, pp. pp.1233.
Dobbie S; Dobbie JS; Jonas PR (2001) <i>Radiative influences on cirrus cloud structure and lifetime</i> Proceedings of RMS 2nd National Conference, UMIST.
Dobbie S; Dobbie JS; Jonas PR (2000) <i>Effect of inhomogeneous radiative heating on the structure of cirrus clouds</i> International Radiation Symposium, St. Petersburg, Russia.
Dobbie S; Dobbie JS; Jonas PR (2002) <i>Evaluating the indirect effect of cirrus clouds</i> Proceedings of the EGS XXVII General Assembly, Nice, France.
Dobbie S; Dobbie JS; Jonas PR (2002) <i>Radiative influences on the dynamical structure of cirrus clouds</i> Proceedings of the EGS XXVII General Assembly, Nice, France.
Dobbie S; Dobbie JS; Li J; Harvey R; Chylek P (2000) <i>GCM radiative forcing of sea salt aerosols</i> Proceedings of the ICCP Conference, Reno, USA, pp. pp.878.
Dobbie S; Jonas P (2001) <i>Radiative influences on the structure of cirrus clouds using a Large Eddy Simulation (LES) model.</i> IRS 2000: CURRENT PROBLEMS IN ATMOSPHERIC RADIATION, pp. 673-676.
Francis JE; Haywood AM; Ashworth A; Roof S; Cantrill DJ (2004) <i>Neogene climates near the South Pole: evidence from fossil plants and climate-vegetation models</i> Palaeontological Association Annual Meeting; Lille, France, Book of abstracts, pp. pp.119.
Francis JE; Haywood AM; Valdes PJ (2004) <i>Plants and climates of the Milldle Pliocene Sirius group, Antarctica: evidence from fossil plants, climates and biome models</i> XXVIII SCAR Open Science Conference "Antarctica and the Southern Ocean in the Global System", Book of abstracts, pp. 249-250.
Francis JE; Haywood AM; Valdes PJ; Sellwood P (2002) <i>Middle Pliocene vegetation and climates of the Sirius Group, Antarctica: evidence from fossil plants, climate and biome models</i> Geological Society of America, Denver, USA, pp. pp.165.
Ghosh S; Dobbie S; Dobbie JS; Marsham J; Jonas PR (2004) <i>On the importance of an accurate quantification of the diffusional uptake of water vapour for the development and radiative properties of cirrus</i> Geophysical Research Abstracts, European Geophysical Union.
Haywood AM; Valdes PJ; Francis JE (2002) <i>New predictions of mid-Pliocene Antarctic climate and biome distributions: applications of combined climate-vegetation modelling to the Sirius Group debate</i> Geological Society of America, Denver, USA, pp. pp.166.
Hill A; Dobbie S; Dobbie JS (2003) <i>A bin microphysical LES model for an evaluation of the semi-direct effect</i> Royal Meteorological Society Book of Abstracts, RMS Conference.
Li J; Wong J; Dobbie S; Dobbie JS; Chylek P (2000) <i>Parameterization of the optical properties of sulfate aerosols</i> Proceedings of the 15th International Conference on Nucleation and Atmospheric Aerosols, Missouri, USA, pp. pp.601.
Li J; Wong J; Dobbie S; Dobbie JS; Chylek P (2000) <i>Growth and optical properties of sulphate and sea salt aerosols</i> CMOS Conference.
Marsham J; Dobbie S; Dobbie JS (2003) <i>The effects of shear on the structure of cirrus clouds</i> Royal Meteorological Society Book of Abstracts, RMS Conference.
Murray BJ; Wilson T; Dobbie S; Cui Z; Al-Jumar S; Ottmar M; Schnaiter M; Wagner R; Benz S; Niemand M (2011) <i>Glassy aerosol particles and their impact on ice clouds</i> ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY.
Rap A; Elliott L; Ingham DB; Lesnic D; Wen X (2004) <i>Boundary element method for inverse source convection-diffusion problems</i> Third International Conference on Boundary Integral Methods: Theory and Applications, pp. pp.78.
Rap A; Elliott L; Ingham DB; Lesnic D; Wen X (2005) <i>Boundary element methods for inverse convection-diffusion problems</i> Advances in Boundary Integral Methods V, pp. 242-251.
Rap A; Forster PM (2008) <i>Estimating the Contrail Impact on Climate Using the UK Met Office Model</i> Eos Trans. AGU, pp. A31J-08.
Rap A; Forster PM (2009) <i>Aviation contrails and their climate impact</i> ICAMB 2009.
Rap A; Ghosh S; Smith MH (2006) <i>Integrating multi-component aerosol responses into general circulation models</i> Geophysical Research Abstracts, pp. 06675.
Rap A; Ghosh S; Smith MH (2007) <i>A multi-component aerosol-cloud parameterisation for global climate modelling</i> Geophysical Research Abstracts, pp. 07247.
Rap A; Lonyangapuo J; Wen X (2005) <i>Some inverse contaminant fluid flow problems using boundary element methods</i> 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, pp. 1-10.
Sarwar M; Dobbie S; Dobbie JS; Li J (2003) <i>Infrared radiative properties of seasalt aerosols</i> Geophysical Research Abstracts, European Geophysical Society, pp. pp.905.
Shepherd A; Du Z; Benham TJ; Dowdeswell JA; Morris EM (2007) <i>Mass balance of Devon Ice Cap, Canadian Arctic</i> Annals of Glaciology, pp. 249-254. <a href="http://dx.doi.org/10.3189/172756407782871279"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Vaidya DB; Gupta R; Dobbie S; Dobbie JS; Chylek P (2002) <i>Scattering properties of composite grains: application to comet dust</i> Proceedings of the 6th Conference on Electromagnetic and Light Scattering by Non-spherical Particles, Gainesville, Florida.
Vieli A; Payne AJ; Du Z; Shepherd A (2006) <i>Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic Peninsula</i> Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, pp. 1815-1839. <a href="http://dx.doi.org/10.1098/rsta.2006.1800"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wingham D; Shepherd A; Muir A; Marshall G (2006) <i>Mass balance of the Antarctic ice sheet</i> Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, pp. 1627-1635. <a href="http://dx.doi.org/10.1098/rsta.2006.1792"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Araujo MB; Nogues-Bravo D; Diniz-Filho JAF; Haywood AM; Valdes PJ; Rahbek C (2008) Quaternary climate changes explain diversity among reptiles and amphibians. <i>Ecography</i>, <b>31</b> (1), pp. 8-15. <a href="http://dx.doi.org/10.1111/j.2007.0906-7590.05318.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bonham S; Haywood AM; Lunt DJ; Collins M; Salzmann U (2008) ENSO, Pliocene Climate and Equifinality. <i>Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences</i>, .
Bonham SG; Haywood AM; Lunt DJ; Collins M; Salzmann U (2009) El Nino-Southern Oscillation, Pliocene climate and equifinality. <i>PHILOS T R SOC A</i>, <b>367</b> (1886), pp. 127-156. <a href="http://dx.doi.org/10.1098/rsta.2008.0212"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bowman VC; Francis JE; Riding JB; Hunter SJ; Haywood AM (2012) A latest Cretaceous to earliest Paleogene dinoflagellate cyst zonation from Antarctica, and implications for phytoprovincialism in the high southern latitudes. <i>Review of Palaeobotany and Palynology</i>, <b>171</b> , pp. 40-56. <a href="http://dx.doi.org/10.1016/j.revpalbo.2011.11.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Braconnot P; Marzin C; Gregoire L; Mosquet E; Marti O (2008) Monsoon response to changes in Earth's orbital parameters: comparisons between simulations of the Eemian and of the Holocene. <i>Climate ot the Past</i>, <b>4</b> , pp. 281-294. <a href="http://dx.doi.org/10.5194/cp-4-281-2008"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/85256/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Bradshaw CD; Lunt DJ; Flecker R; Salzmann U; Pound MJ; Haywood AM; Eronen JT (2012) The relative roles of CO2 and palaeogeography in determining late Miocene climate: results from a terrestrial model-data comparison. <i>Climate of the Past</i>, <b>8</b> (4), pp. 1257-1285. <a href="http://dx.doi.org/10.5194/cp-8-1257-2012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bradshaw CD; Lunt DJ; Flecker R; Salzmann U; Pound MJ; Haywood AM; Eronen JT (2012) Erratim: The relative roles of CO <inf>2</inf> and palaeogeography in determining late Miocene climate: Results from a terrestrial model-data comparison (Climate of the Past (2012) 8 (1257-1285)). <i>Climate of the Past</i>, <b>8</b> (4), pp. 1301-1307. <a href="http://dx.doi.org/10.5194/cp-8-1301-2012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bragg FJ; Lunt DJ; Haywood AM (2012) Mid-Pliocene climate modelled using the UK Hadley Centre Model: PlioMIP Experiments 1 and 2. <i>GEOSCIENTIFIC MODEL DEVELOPMENT</i>, <b>5</b> (5), pp. 1109-1125. <a href="http://dx.doi.org/10.5194/gmd-5-1109-2012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Broadley SL; Murray BJ; Herbert RJ; Atkinson JD; Dobbie S; Condliffe E; Neve L (2011) Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust. <i>Atmospheric Chemistry and Physics Discussions</i>, <b>11</b> (8), pp. 22801-22856. <a href="http://dx.doi.org/10.5194/acpd-11-22801-2011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Broadley SL; Murray BJ; Herbert RJ; Atkinson JD; Dobbie S; Malkin TL; Condliffe E (2012) Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust. <i>Atm. Chem. Phys.</i>, <b>12</b> , pp. 287-307.
Cerri CC; Bernoux M; Maia SMF; Cerri CEP; Costa Junior C; Feigl BJ; Frazão LA; Mello FFDC; Galdos MV; Moreira CS (2010) Greenhouse gas mitigation options in Brazil for land-use change, livestock and agriculture. <i>Scientia Agricola</i>, <b>67</b> (1), pp. 102-116. <a href="http://dx.doi.org/10.1590/S0103-90162010000100015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Cerri CC; Galdos MV; Maia SMF; Bernoux M; Feigl BJ; Powlson D; Cerri CEP (2011) Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data. <i>European Journal of Soil Science</i>, <b>62</b> (1), pp. 23-28. <a href="http://dx.doi.org/10.1111/j.1365-2389.2010.01315.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Cerri CC; Maia SMF; Galdos MV; Cerri CEP; Feigl BJ; Bernoux M (2009) Brazilian greenhouse gas emissions: the importance of agriculture and livestock. <i>Scientia Agricola</i>, <b>66</b> (6), pp. 831-843. <a href="http://dx.doi.org/10.1590/S0103-90162009000600017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Chandler MA; Dowsett HJ; Haywood AM (2008) The PRISM Model-Data Cooperative: Mid-Pliocene Data-Model Comparisons. <i>PAGES News</i>, <b>16</b> (2), pp. 24-25.
Chylek P; Dobbie JSE (1995) Radiative properties of finite inhomogeneous cirrus clouds: monte carlo simulations. <b>52</b> (20), pp. 3512-3522. <a href="http://dx.doi.org/10.1175/1520-0469(1995)052<3512:RPOFIC>2.0.CO;2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Clark N; Williams M; Okamura B; Smellie J; Nelson A; Knowles T; Taylor P; Leng M; Zalasiewicz J; Haywood A (2010) Early Pliocene Weddell Sea seasonality determined from bryozoans. <i>STRATIGRAPHY</i>, <b>7</b> (2-3), pp. 199-206.
Daley TJ; Thomas ER; Holmes JA; Street-Perrott FA; Chapman MR; Tindall JC; Valdes PJ; Loader NJ; Marshall JD; Wolff EW (2011) The 8200yr BP cold event in stable isotope records from the North Atlantic region. <i>Global and Planetary Change</i>, <b>79</b> (3-4), pp. 288-302. <a href="http://dx.doi.org/10.1016/j.gloplacha.2011.03.006"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
de la Peña S; Nienow P; Shepherd A; Helm V; Mair D; Hanna E; Huybrechts P; Guo Q; Cullen R; Wingham D (2010) Spatially extensive estimates of annual accumulation in the dry snow zone of the Greenland Ice Sheet determined from radar altimetry. <i>The Cryosphere</i>, <b>4</b> (4), pp. 467-474. <a href="http://dx.doi.org/10.5194/tc-4-467-2010"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Demattê JAM; Galdos MV; Guimarães RV; Genú AM; Nanni MR; Zullo J (2007) Quantification of tropical soil attributes from ETM+/LANDSAT‐7 data. <i>International Journal of Remote Sensing</i>, <b>28</b> (17), pp. 3813-3829. <a href="http://dx.doi.org/10.1080/01431160601121469"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dobbie J; Li J; Chylek P (1999) Two- and four-stream optical properties for water clouds and solar wavelengths. <i>Journal of Geophysical Research</i>, <b>104</b> (D2), pp. 2067-2079.
Dobbie S; Dobbie JS (2003) Cirrus. <i>The Holocene</i>, .
Dobbie S; Jonas P (2001) Radiative influences on the structure and lifetime of cirrus clouds. <i>Q J ROY METEOR SOC</i>, <b>127</b> (578), pp. 2663-2682.
Dobbie S; Li JN; Harvey R; Chylek P (2003) Sea-salt optical properties and GCM forcing at solar wavelengths. <i>ATMOSPHERIC RESEARCH</i>, <b>65</b> (3-4), pp. 211-233.
Dolan AM; Haywood AM; Dowsett HJ (2012) Climate model simulations of the mid-Pliocene: Earth's last great interval of global warmth. <i>Eos</i>, <b>93</b> (2), pp. 18-18.
Dolan AM; Haywood AM; Hill DJ; Dowsett HJ; Hunter SJ; Lunt DJ; Pickering SJ (2011) Sensitivity of Pliocene ice sheets to orbital forcing. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>309</b> (1-2), pp. 98-110. <a href="http://dx.doi.org/10.1016/j.palaeo.2011.03.030"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dolan AM; Koenig SJ; Hill DJ; Haywood AM; DeConto RM (2011) Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) – experimental design. <i>Geoscientific Model Development</i>, <b>5</b> , pp. 963-974. <a href="http://dx.doi.org/10.5194/gmd-5-963-2012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dowdeswell JA; Bassford RP; Gorman MR; Williams M; Glazovsky AF; Macheret YY; Shepherd AP; Vasilenko YV; Savatyuguin LM; Hubberten HW (2002) Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic. <i>Journal of Geophysical Research: Solid Earth</i>, <b>107</b> (4).
Dowsett H; Robinson M; Haywood A; Salzmann U; Hill D; Sohl L; Chandler M; Williams M; Foley K; Stoll D (2010) The PRISM3D paleoenvironmental reconstruction. <i>STRATIGRAPHY</i>, <b>7</b> (2-3), pp. 123-139.
Dowsett HJ; Haywood AM; Valdes PJ; Robinson MM; Lunt DJ; Hill DJ; Stoll DK; Foley KM (2011) Sea Surface Temperatures of the Mid-Piacenzian Warm Period: A Comparison of PRISM3 and HadCM3. <i>Palaeogeography Palaeoclimatology Palaeoecology</i>, <b>309</b> (1-2), pp. 83-91. <a href="http://dx.doi.org/10.1016/j.palaeo.2011.03.016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dowsett HJ; Robinson MM; Haywood AM; Hill DJ; Dolan AM; Stoll DK; Chan WL; Abe-Ouchi A; Chandler MA; Rosenbloom NA (2012) Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. <i>Nature Climate Change</i>, . <a href="http://dx.doi.org/10.1038/NCLIMATE1455"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dowsett HJ; Robinson MM; Haywood AM; Hill DJ; Dolan AM; Stoll DK; Chan WL; Abe-Ouchi A; Chandler MA; Rosenbloom NA (2012) Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. <i>Nature Climate Change</i>, <b>2</b> (5), pp. 365-371. <a href="http://dx.doi.org/10.1038/nclimate1455"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Florindo F; Nelson AE; Haywood AM (2008) Introduction to 'Antarctic cryosphere and Southern Ocean climate evolution (Cenozoic-Holocene)'. <i>PALAEOGEOGR PALAEOCL</i>, <b>260</b> (1-2), pp. 1-7. <a href="http://dx.doi.org/10.1016/j.palaeo.2007.12.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Francis JE; Haywood AM; Ashworth AC; Valdes PJ (2007) Tundra environments in the Neogene Sirius Group, Antarctica: evidence from the geological record and coupled atmosphere-vegetation models. <i>J GEOL SOC LONDON</i>, <b>164</b> , pp. 317-322.
Galdos MV; Cerri CC; Cerri CEP (2009) Soil carbon stocks under burned and unburned sugarcane in Brazil. <i>Geoderma</i>, <b>153</b> (3-4), pp. 347-352. <a href="http://dx.doi.org/10.1016/j.geoderma.2009.08.025"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Galdos MV; Cerri CC; Cerri CEP; Paustian K; Van Antwerpen R (2010) Simulation of sugarcane residue decomposition and aboveground growth. <i>Plant and Soil</i>, <b>326</b> (1-2), pp. 243-259. <a href="http://dx.doi.org/10.1007/s11104-009-0004-3"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Galdos MV; Cerri CC; Cerri CEP; Paustian K; Van Antwerpen R (2009) Simulation of Soil Carbon Dynamics under Sugarcane with the CENTURY Model. <i>Soil Science Society of America Journal</i>, <b>73</b> (3), pp. 802-802. <a href="http://dx.doi.org/10.2136/sssaj2007.0285"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
GALDOS MV; CERRI CC; LAL R; BERNOUX M; FEIGL B; CERRI CEP (2010) Net greenhouse gas fluxes in Brazilian ethanol production systems. <i>GCB Bioenergy</i>, <b>2</b> (1), pp. 37-44. <a href="http://dx.doi.org/10.1111/j.1757-1707.2010.01037.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Galdos MV; De Maria IC; Camargo OA (2004) Soil chemical properties and corn production in a sewage sludge-amended soil. <i>Revista Brasileira de Ciencia do Solo</i>, <b>28</b> (3), pp. 569-577.
Galdos MV; De Maria IC; Camargo OAD; Dechen SCF (2009) Sewage sludge application on cultivated soils: effects on runoff and trace metal load. <i>Scientia Agricola</i>, <b>66</b> (3), pp. 368-376. <a href="http://dx.doi.org/10.1590/S0103-90162009000300012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Georgiou S; Shepherd A; McMillan M; Nienow P (2009) Seasonal evolution of supraglacial lake volume from ASTER imagery. <i>Annals of Glaciology</i>, <b>50</b> (52), pp. 95-100. <a href="http://dx.doi.org/10.3189/172756409789624328"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Ghosh S; Dobbie S; Marsham J; Jonas PR (2007) On the importance of the diffusional uptake of water vapour for the development and radiative properties of high altitude clouds: a large eddy model sensitivity study. <i>Q J ROY METEOR SOC</i>, <b>133</b> (628), pp. 1731-1741. <a href="http://dx.doi.org/10.1002/qj.154"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Ghosh S; Smith MH; Rap A (2007) Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies. <i>PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES</i>, <b>365</b> (1860), pp. 2659-2674. <a href="http://dx.doi.org/10.1098/rsta.2007.2082"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/3457/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gladstone RM; Lee V; Rougier J; Payne AJ; Hellmer H; Le Brocq A; Shepherd A; Edwards TL; Gregory J; Cornford SL (2012) Calibrated prediction of Pine Island Glacier retreat during the 21st and 22nd centuries with a coupled flowline model. <i>Earth and Planetary Science Letters</i>, <b>333-334</b> , pp. 191-199. <a href="http://dx.doi.org/10.1016/j.epsl.2012.04.022"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Gohl K; Haywood A (2009) International viewpoint and news. <i>ENVIRON GEOL</i>, <b>56</b> (6), pp. 1249-1250. <a href="http://dx.doi.org/10.1007/s00254-008-1622-4"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Gourmelen N; Kim SW; Shepherd A; Park JW; Sundal AV; Bjornsson H; Palsson F (2011) Ice velocity determined using conventional and multiple-aperture InSAR. <i>Earth and Planetary Science Letters</i>, <b>307</b> (1-2). <a href="http://dx.doi.org/10.1016/j.epsl.2011.04.026"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Gregoire LJ; Payne AJ; Valdes PJ (2012) Deglacial rapid sea level rises caused by ice-sheet saddle collapses. <i>Nature</i>, <b>487</b> (7406), pp. 219-222. <a href="http://dx.doi.org/10.1038/nature11257"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76493/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gregoire LJ; Valdes PJ; Payne AJ; Kahana R (2011) Optimal tuning of a GCM using modern and glacial constraints. <i>Climate Dynamics</i>, <b>37</b> (3-4), pp. 705-719. <a href="http://dx.doi.org/10.1007/s00382-010-0934-8"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Gupta R; Vaidya DB; Dobbie S; Dobbie JS; Chylek P (2006) Scattering properties and composition of cometary dust. <i>Astrophysics and Space Science</i>, <b>301</b> (1), pp. 35-52. <a href="http://dx.doi.org/10.1007/s10509-006-5249-1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hawley RL; Brandt O; Morris EM; Kohler J; Shepherd AP; Wingham DJ (2008) Techniques for measuring high-resolution firn density profiles: case study from Kongsvegen, Svalbard. <i>Journal of Glaciology</i>, <b>54</b> (186), pp. 463-468. <a href="http://dx.doi.org/10.3189/002214308785837020"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hawley RL; Morris EM; Cullen R; Nixdorf U; Shepherd AP; Wingham DJ (2006) ASIRAS airborne radar resolves internal annual layers in the dry-snow zone of Greenland. <i>Geophysical Research Letters</i>, <b>33</b> (4). <a href="http://dx.doi.org/10.1029/2005GL025147"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hawley RL; Morris EM; Cullen R; Nixdorf U; Shepherd AP; Wingham DJ (2006) ASIRAS airborne radar resolves internal annual layers in the dry-snow zone of Greenland. <i>European Space Agency, (Special Publication) ESA SP</i>, (614).
Hawley RL; Shepherd A; Cullen R; Helm V; Wingham DJ (2009) Ice-sheet elevations from across-track processing of airborne interferometric radar altimetry. <i>Geophysical Research Letters</i>, <b>36</b> (22). <a href="http://dx.doi.org/10.1029/2009GL040416"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hawley RL; Shepherd A; Cullen R; Helm V; Wingham DJ (2009) Ice-sheet elevations from across-track processing of airborne interferometric radar altimetry. <i>GEOPHYS RES LETT</i>, <b>36</b> , L22501. <a href="http://dx.doi.org/10.1029/2009GL040416"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood A; Valdes P; Peck V (2006) The future of El Niño?. <i>Planet Earth</i>, (WINTER 2006), pp. 30.
Haywood AM; Chandler MA; Valdes PJ; Salzmann U; Lunt DJ; Dowsett HJ (2009) Comparison of mid-Pliocene climate predictions produced by the HadAM3 and GCMAM3 General Circulation Models. <i>GLOBAL PLANET CHANGE</i>, <b>66</b> (3-4), pp. 208-224. <a href="http://dx.doi.org/10.1016/j.gloplacha.2008.12.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Cook SR (2005) Evidence for stasis in the Regional Wind Pattern of the Western Mediterranean since the Mid Pleistocene. <i>Quaternary Newsletter</i>, <b>106</b> , pp. 9-23.
Haywood AM; Dekens P; Ravelo AC; Williams M (2005) Warmer tropics during the mid-Pliocene? Evidence from alkenone paleothermometry and a fully coupled ocean-atmosphere GCM. <i>Geochemistry, Geophysics, Geosystems</i>, <b>6</b> (3), pp. pp.Q03010. <a href="http://dx.doi.org/10.1029/2004GC000799"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Dowsett HJ; Otto-Bliesner B; Chandler MA; Dolan AM; Hill DJ; Lunt DJ; Robinson MM; Rosenbloom N; Salzmann U (2009) Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 1). <i>GEOSCI MODEL DEV</i>, <b>2</b> (2), pp. 1215-1244.
Haywood AM; Dowsett HJ; Otto-Bliesner B; Chandler MA; Dolan AM; Hill DJ; Lunt DJ; Robinson MM; Rosenbloom N; Salzmann U (2010) Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 1). <i>GEOSCI MODEL DEV</i>, <b>3</b> (1), pp. 227-242.
Haywood AM; Dowsett HJ; Robinson MM; Stoll DK; Dolan AM; Lunt DJ; Otto-Bliesner B; Chandler MA (2011) Pliocene Model Intercomparison Project(PlioMIP): experimental design and boundary conditions (Experiment 2). <i>Geoscientific Model Development</i>, <b>4</b> , pp. 571-577. <a href="http://dx.doi.org/10.5194/gmd-4-571-2011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Dowsett HJ; Valdes PJ; Lunt DJ; Francis JE; Sellwood BW (2009) Introduction. Pliocene climate, processes and problems. <i>PHILOS T R SOC A</i>, <b>367</b> (1886), pp. 3-17. <a href="http://dx.doi.org/10.1098/rsta.2008.0205"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Dowsett HJ; Valdes PJ; Lunt DJ; Francis JE; Sellwood BW (2008) Pliocene climate: processes and problems. <i>Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences</i>, .
Haywood AM; Ramstein G; Abe-Ouchi A (2011) Comparing structurally different climate models in a paleoenvironmental context. <i>Eos</i>, <b>92</b> (21), pp. 180-180.
Haywood AM; Ridgwell A; Lunt DJ; Hill DJ; Pound MJ; Dowsett HJ; Dolan AM; Francis JE; Williams M (2011) Are there pre-Quaternary geological analogues for a future greenhouse gas-induced global warming?. <i>Philosophical Transactions of the Royal Society of London</i>, <b>Series A</b> (369), pp. 933-956. <a href="http://dx.doi.org/10.1098/rsta.2010.0317"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Sellwood BW; Valdes PJ (2000) Regional warming: Pliocene (3 Ma) paleoclimate of Europe and the Mediterranean. <i>Geology</i>, <b>28</b> (12), pp. 1063-1066. <a href="http://dx.doi.org/10.1130/0091-7613(2000)028<1063:RWPMPO>2.3.CO;2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Sellwood BW; Valdes PJ (2000) Regional warming: Pliocene (3 Ma) paleoclimate of Europe and the Mediterranean. <i>Geology</i>, <b>28</b> (12), pp. 1063-1066. <a href="http://dx.doi.org/10.1130/0091-7613(2000)28<1063:RWPMPO>2.0.CO;2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Smellie JL; Ashworth AC; Cantrill DJ; Florindo F; Hambrey MJ; Hill D; Hillenbrand CD; Hunter SJ; Larter RD (2008) Chapter 10 Middle Miocene to Pliocene History of Antarctica and the Southern Ocean. <i>Developments in Earth and Environmental Sciences</i>, <b>8</b> , pp. 401-463. <a href="http://dx.doi.org/10.1016/S1571-9197(08)00010-4"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ (2006) Vegetation cover in a warmer world simulated using a dynamic global vegetation model for the Mid-Pliocene. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>237</b> (2-4), pp. 412-427. <a href="http://dx.doi.org/10.1016/j.palaeo.2005.12.012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ (2004) Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. <i>Earth and Planetary Science Letters</i>, <b>218</b> (3-4), pp. 363-377. <a href="http://dx.doi.org/10.1016/S0012-821X(03)00685-X"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ; Dowsett HJ (2009) Dedication: Prof. Bruce William Sellwood (1946-2007) OBITUARY. <i>PHILOS T R SOC A</i>, <b>367</b> (1886), pp. 19-20. <a href="http://dx.doi.org/10.1098/rsta.2008.0208"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ; Francis JE; Sellwood BW (2002) Global middle Pliocene biome reconstruction: A data/model synthesis. <i>GEOCHEM GEOPHY GEOSY</i>, <b>3</b> , 1072. <a href="http://dx.doi.org/10.1029/2002GC000358"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ; Markwick PJ (2004) Cretaceous (Wealden) climates: a modelling perspective. <i>Cretaceous Research</i>, <b>25</b> (3), pp. 303-311. <a href="http://dx.doi.org/10.1016/j.cretres.2004.01.005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ; Peck VL (2007) A permanent El Nino-like state during the Pliocene?. <i>PALEOCEANOGRAPHY</i>, <b>22</b> (1), PA1213. <a href="http://dx.doi.org/10.1029/2006PA001323"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ; Sellwood BW (2002) Magnitude of climate variability during middle Pliocene warmth: a palaeoclimate modelling study. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>188</b> (1-2), pp. 1-24. <a href="http://dx.doi.org/10.1016/S0031-0182(02)00506-0"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ; Sellwood BW (2000) Global scale palaeoclimate reconstruction of the middle Pliocene climate using the UKMO GCM: initial results. <i>Global and Planetary Change</i>, <b>25</b> (3-4), pp. 239-256. <a href="http://dx.doi.org/10.1016/S0921-8181(00)00028-X"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ; Sellwood BW; Kaplan JO (2002) Antarctic climate during the middle Pliocene: model sensitivity to ice sheet variation. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>182</b> (1-2), pp. 93-115. <a href="http://dx.doi.org/10.1016/S0031-0182(01)00454-0"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ; Sellwood BW; Kaplan JO; Dowsett HJ (2001) Modelling Middle Pliocene warm climates of the USA. <i>Palaeontologia Electronica</i>, <b>4</b> (1), pp. pp.21.
Haywood AM; Williams M (2006) Forecasting future weather from Rocks. <i>Rockwatch</i>, <b>42</b> , pp. 8-9.
Haywood AM; Williams M (2004) Reconstructing the oceans of the Late Miocene: how the shell chemistry of fossils reveals ancient patterns of ocean circulation. <i>Teaching Earth Sciences</i>, <b>29</b> , pp. 25-27.
Haywood AM; Williams M (2005) The climate of the future: clues from 3 million years ago. <i>Geology Today</i>, <b>21</b> (4), pp. 138-143.
Haywood AM; Williams M (2005) Exploring warmer worlds in Earth's geological past. <i>Planet Earth</i>, , pp. pp.31.
Haywood JM; Allan RP; Bornemann J; Forster PM; Francis PN; Milton S; Radel G; Rap A; Shine KP; Thorpe R (2009) A case study of the radiative forcing of persistent contrails evolving into contrail-induced cirrus. <i>J GEOPHYS RES-ATMOS</i>, <b>114</b> , D24201. <a href="http://dx.doi.org/10.1029/2009JD012650"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76991/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hill AA; Dobbie S (2008) The impact of aerosols on non-precipitating marine stratocumulus. II: The semi-direct effect. <i>Q J ROY METEOR SOC</i>, <b>134</b> (634), pp. 1155-1165. <a href="http://dx.doi.org/10.1002/qj.277"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hill AA; Dobbie S; Yin Y (2008) The impact of aerosols on non-precipitating marine stratocumulus. I: Model description and prediction of the indirect effect. <i>Q J ROY METEOR SOC</i>, <b>134</b> (634), pp. 1143-1154. <a href="http://dx.doi.org/10.1002/qj.278"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hill DJ; Csank AZ; Dolan AM; Lunt DJ (2011) Pliocene climate variability: Northern Annular Mode in models and tree-ring data. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>309</b> (1-2), pp. 118-127. <a href="http://dx.doi.org/10.1016/j.palaeo.2011.04.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hill DJ; Csank AZ; Dolan AM; Lunt DJ (2012) Pliocene climate variability: Northern Annular Mode in models and tree-ring data. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>309</b> , pp. 118-127. <a href="http://dx.doi.org/10.1016/j.palaeo.2011.04.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hill DJ; Dolan AM; Haywood AM; Hunter SJ; Stoll DK (2010) Sensitivity of the Greenland Ice Sheet to Pliocene sea surface temperatures. <i>STRATIGRAPHY</i>, <b>7</b> (2-3), pp. 111-121.
Hughes JK; Haywood A; Mithen SJ; Sellwood BW; Valdes PJ (2007) Investigating early hominin dispersal patterns: developing a framework for climate data integration. <i>J HUM EVOL</i>, <b>53</b> (5), pp. 465-474. <a href="http://dx.doi.org/10.1016/j.jhevol.2006.12.011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hunter SJ; Valdes PJ; Haywood AM; Markwick PJ (2008) Modelling Maastrichtian climate: Investigating the role of geography, atmospheric CO2 and vegetation. <i>Climate of the Past</i>, <b>4</b> , pp. 1-39.
Hunter SJ; Valdes PJ; Hunter SJ; Haywood AM; Markwick PJ (2008) Modelling Maastrichtian climate: Investigating the role of geography, atmospheric CO and vegetation. <i>Climate of the Past Discussions</i>, <b>4</b> (4), pp. 981-1019.
Ivanovic RF; Freer J (2009) Science versus politics: truth and uncertainty in predictive modelling. <i>Hydrological Processes</i>, <b>23</b> (17), pp. 2549-2554. <a href="http://dx.doi.org/10.1002/hyp.7406"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Jones HM; Haywood J; Marenco F; O'Sullivan D; Meyer J; Thorpe R; Gallagher MW; Krämer M; Bower KN; Rädel G (2012) A methodology for in-situ and remote sensing of microphysical and radiative properties of contrails as they evolve into cirrus. <i>Atmospheric Chemistry and Physics</i>, <b>12</b> (17), pp. 8157-8175. <a href="http://dx.doi.org/10.5194/acp-12-8157-2012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76982/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Joshi MM; Webb MJ; Maycock AC; Collins M (2010) Stratospheric water vapour and high climate sensitivity in a version of the HadSM3 climate model. <i>Atmospheric Chemistry and Physics</i>, <b>10</b> (15), pp. 7161-7167. <a href="http://dx.doi.org/10.5194/acp-10-7161-2010"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
King MA; Padman L; Nicholls K; Clarke PJ; Gudmundsson GH; Kulessa B; Shepherd A (2011) Ocean tides in the Weddell Sea: New observations on the Filchner-Ronne and Larsen C ice shelves and model validation. <i>Journal of Geophysical Research: Oceans</i>, <b>116</b> (6). <a href="http://dx.doi.org/10.1029/2011JC006949"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
King MA; Padman L; Nicholls K; Clarke PJ; Gudmundsson GH; Kulessa B; Shepherd A (2011) Ocean tides in the Weddell Sea: New observations on the Filchner-Ronne and Larsen C ice shelves and model validation. <i>Journal of Geophysical Research</i>, <b>116</b> (C6). <a href="http://dx.doi.org/10.1029/2011JC006949"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
King MA; Padman L; Nicholls K; Clarke PJ; Gudmundsson GH; Kulessa B; Shepherd A; Gourmelen N (2011) Erratum: Ocean tides in the Weddell Sea: New observations on the Filchner-Ronne and Larsen C ice shelves and model validation (Journal of Geophysical Research (2011) 116 DOI:10.1029/2011JC007463). <i>Journal of Geophysical Research: Oceans</i>, <b>116</b> (8).
Knowles T; Taylor PD; Williams M; Haywood AM; Okamura B (2009) Pliocene seasonality across the North Atlantic inferred from cheilostome bryozoans. <i>PALAEOGEOGR PALAEOCL</i>, <b>277</b> (3-4), pp. 226-235. <a href="http://dx.doi.org/10.1016/j.palaeo.2009.04.006"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Koehler AK; Murphy K; Kiely G; Sottocornola M (2009) Seasonal variation of DOC concentration and annual loss of DOC from an Atlantic blanket bog in South Western Ireland. <i>Biogeochemistry</i>, <b>95</b> (2), pp. 231-242. <a href="http://dx.doi.org/10.1007/s10533-009-9333-9"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Koehler AK; Sottocornola M; Kiely G (2011) How strong is the current carbon sequestration of an Atlantic blanket bog?. <i>Global Change Biology</i>, <b>17</b> (1), pp. 309-319. <a href="http://dx.doi.org/10.1111/j.1365-2486.2010.02180.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Kulkarni G; Dobbie J (2010) Ice nucleation properties of mineral dust particles: determination of onset RHi, IN active fraction, nucleation time-lag, and the effect of active sites on contact angles. <i>Atmospheric Chemistry and Physics</i>, <b>10</b> , pp. 95-105.
Kulkarni G; Dobbie S; Kulkarni G (2009) Ice nucleation properties of mineral dust particles: Determination of onset RH , IN active fraction, nucleation time-lag, and the effect of active sites on contact angles. <i>Atmospheric Chemistry and Physics Discussions</i>, <b>9</b> (3), pp. 11299-11332.
Kulkarni G; Dobbie S; McQuaid J (2009) A new thermal gradient ice nucleation diffusion chamber instrument: design, development and first results using Saharan mineral dust. <i>Atmospheric Measurement Technology</i>, <b>2</b> , pp. 221-229.
Kulkarni G; Dobbie S; McQuaid JB (2009) A new thermal gradient ice nucleation diffusion chamber instrument: design, development and first results using Saharan mineral dust. <i>ATMOS MEAS TECH</i>, <b>2</b> (1), pp. 221-229.
Kurten T; Zhou L; Makkonen R; Merikanto J; Raisanen P; Boy M; Richards N; Rap A; Smolander S; Sogachev A (2011) Large methane releases lead to strong aerosol forcing and reduced cloudiness. <i>ATMOS CHEM PHYS</i>, <b>11</b> (14), pp. 6961-6969. <a href="http://dx.doi.org/10.5194/acp-11-6961-2011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76986/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Lawrence KT; Herbert TD; Brown CM; Raymo ME; Haywood AM (2009) High-amplitude variations in north atlantic sea surface temperature during the early pliocene warm period. <i>Paleoceanography</i>, <b>24</b> (2).
Lawrence KT; Herbert TD; Brown CM; Raymo ME; Haywood AM (2009) High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. <i>PALEOCEANOGRAPHY</i>, <b>24</b> , PA2218. <a href="http://dx.doi.org/10.1029/2008PA001669"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Leeson AA; Shepherd A; Palmer S; Sundal A; Fettweis X (2012) Simulating the growth of supraglacial lakes at the western margin of the Greenland ice sheet. <i>The Cryosphere</i>, <b>6</b> (5), pp. 1077-1086. <a href="http://dx.doi.org/10.5194/tc-6-1077-2012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Li J; Dobbie S; Raisanen P; Min Q (2005) Accounting for unresolved clouds in a 1-D solar radiative-transfer model. <i>Q J ROY METEOR SOC</i>, <b>131</b> (608), pp. 1607-1629. <a href="http://dx.doi.org/10.1256/qj.04.31"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Li J; Ma X; von Salzen K; Dobbie S (2008) Parameterization of sea-salt optical properties and physics of the associated radiative forcing. <i>ATMOS CHEM PHYS</i>, <b>8</b> (16), pp. 4787-4798.
Li J; Wong JGD; Dobbie JS; Chylek P (2001) Parameterization of the optical properties of sulfate aerosols. <i>J ATMOS SCI</i>, <b>58</b> (2), pp. 193-209.
Li, J; Dobbie JSE (1998) Four-stream isosector approximation for solar radiative transfer. <i>Journal of the Atmospheric Sciences</i>, <b>55</b> (4), pp. 558-567. <a href="http://dx.doi.org/10.1175/1520-0469(1998)055<0558:FSIAFS>2.0.CO;2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lorenzen ED; Nogues-Bravo D; Orlando L; Weinstock J; Binladen J; Marske KA; Ugan A; Borregaard MK; Gilbert MTP; Nielsen R (2011) Species-specific responses of Late Quaternary megafauna to climate and humans. <i>Nature</i>, . <a href="http://dx.doi.org/10.1038/nature10574"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Dunkley Jones T; Heinemann M; Huber M; LeGrande A; Winguth A; Loptson C; Marotzke J; Roberts CD; Tindall J (2012) A model-data comparison for a multi-model ensemble of early Eocene atmosphere-ocean simulations: EoMIP. <i>CLIMATE OF THE PAST</i>, <b>8</b> (5), pp. 1717-1736. <a href="http://dx.doi.org/10.5194/cp-8-1717-2012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Flecker R; Valdes PJ; Salzmann U; Gladstone R; Haywood AM (2008) A methodology for targeting palaeo proxy data acquisition: A case study for the terrestrial late Miocene. <i>EARTH PLANET SC LETT</i>, <b>271</b> (1-4), pp. 53-62. <a href="http://dx.doi.org/10.1016/j.epsl.2008.03.035"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Foster GL; Haywood AM; Stone EJ (2008) Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. <i>NATURE</i>, <b>454</b> (7208), pp. 1102-U41. <a href="http://dx.doi.org/10.1038/nature07223"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Haywood AM; Foster GL; Stone EJ (2009) The Arctic cryosphere in the Mid-Pliocene and the future. <i>PHILOS T R SOC A</i>, <b>367</b> (1886), pp. 49-67. <a href="http://dx.doi.org/10.1098/rsta.2008.0218"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Haywood AM; Schmidt GA; Salzmann U; Valdes PJ; Dowsett HJ (2012) On the causes of mid-Pliocene warmth and polar amplification. <i>Earth and Planetary Science Letters</i>, <b>321-322</b> , pp. 128-138. <a href="http://dx.doi.org/10.1016/j.epsl.2011.12.042"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/88182/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Lunt DJ; Haywood AM; Schmidt GA; Salzmann U; Valdes PJ; Dowsett HJ (2010) Earth system sensitivity inferred from Pliocene modelling and data. <i>NAT GEOSCI</i>, <b>3</b> (1), pp. 60-64. <a href="http://dx.doi.org/10.1038/NGEO706"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Ridgwell A; Sluijs A; Zachos J; Hunter S; Haywood AM (2011) A model for orbital pacing of methane hydrate destabilization during the Palaeogene. <i>Nature Geoscience</i>, . <a href="http://dx.doi.org/10.1038/ngeo1266"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Valdes PJ; Dunkley Jones T; Ridgwell A; Haywood AM; Schmidt DN; Marsh R; Maslin M (2010) CO2-driven ocean circulation changes as an amplifier of Paleocene-Eocene thermal maximum hydrate destabilization. <i>GEOLOGY</i>, <b>38</b> (10), pp. 875-878. <a href="http://dx.doi.org/10.1130/G31184.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Valdes PJ; Haywood A; Rutt IC (2008) Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation. <i>CLIM DYNAM</i>, <b>30</b> (1), pp. 1-18. <a href="http://dx.doi.org/10.1007/s00382-007-0265-6"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Maia SMF; Ogle SM; Cerri CC; Cerri CEP (2010) Changes in soil organic carbon storage under different agricultural management systems in the Southwest Amazon Region of Brazil. <i>Soil and Tillage Research</i>, <b>106</b> (2), pp. 177-184. <a href="http://dx.doi.org/10.1016/j.still.2009.12.005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Mani R; Dobbie S; Scott A; Shepherd G; Gault W; Brown S (2005) Performance evaluation of a thermal Doppler Michelson interferometer system. <i>APPL OPTICS</i>, <b>44</b> (33), pp. 7144-7155.
Marsham JH; Dobbie S (2005) The effects of wind shear on cirrus: A large-eddy model and radar case-study. <i>Q J ROY METEOR SOC</i>, <b>131</b> (611), pp. 2937-2955. <a href="http://dx.doi.org/10.1256/qj.04.122"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Marsham JH; Dobbie S; Hogan RJ (2006) Evaluation of a large-eddy model simulation of a mixed-phase altocumulus cloud using microwave radiometer, lidar and Doppler radar data. <i>Q J ROY METEOR SOC</i>, <b>132</b> (618), pp. 1693-1715. <a href="http://dx.doi.org/10.1256/qj.05.145"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Maycock AC; Keeley SPE; Charlton-Perez AJ; Doblas-Reyes FJ (2011) Stratospheric circulation in seasonal forecasting models: implications for seasonal prediction. <i>Climate Dynamics</i>, <b>36</b> (1-2), pp. 309-321. <a href="http://dx.doi.org/10.1007/s00382-009-0665-x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Maycock AC; Shine KP (2012) Stratospheric water vapor and climate: Sensitivity to the representation in radiation codes. <i>Journal of Geophysical Research: Atmospheres</i>, <b>117</b> (D13), pp. n/a-n/a. <a href="http://dx.doi.org/10.1029/2012JD017484"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Maycock AC; Shine KP; Joshi MM (2011) The temperature response to stratospheric water vapour changes. <i>Quarterly Journal of the Royal Meteorological Society</i>, <b>137</b> (657), pp. 1070-1082. <a href="http://dx.doi.org/10.1002/qj.822"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
McClymont EL; Ganeshram RS; Pichevin LE; Talbot HM; van Dongen BE; Thunell RC; Haywood AM; Singarayer JS; Valdes PJ (2012) Sea-surface temperature records of Termination 1 in the Gulf of California: Challenges for seasonal and interannual analogues of tropical Pacific climate change. <i>PALEOCEANOGRAPHY</i>, <b>27</b> , ARTN PA2202. <a href="http://dx.doi.org/10.1029/2011PA002226"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
McFarquhar G; List R; Hudak D; Nissen R; Dobbie JS; Tung NP; Kang TS (1996) Flux measurements of pulsating rain, with a distrometer and doppler radar, during the Phase II of the Joint Tropical Rain Experiment in Malaysia. <i>Journal of Applied Meteorology</i>, <b>35</b> (6), pp. 859-874.
McMillan M; Nienow P; Shepherd A; Benham T; Sole A (2007) Seasonal evolution of supra-glacial lakes on the Greenland Ice Sheet. <i>Earth and Planetary Science Letters</i>, <b>262</b> (3-4), pp. 484-492. <a href="http://dx.doi.org/10.1016/j.epsl.2007.08.002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
McMillan M; Shepherd A; Gourmelen N; Park J-W; Nienow P; Rinne E; Leeson A (2012) Mapping ice-shelf flow with interferometric synthetic aperture radar stacking. <i>Journal of Glaciology</i>, <b>58</b> (208), pp. 265-277. <a href="http://dx.doi.org/10.3189/2012JoG11J072"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
McMillan M; Shepherd A; Nienow P; Leeson A (2011) Tide model accuracy in the Amundsen Sea, Antarctica, from radar interferometry observations of ice shelf motion. <i>Journal of Geophysical Research</i>, <b>116</b> (C11). <a href="http://dx.doi.org/10.1029/2011JC007294"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
McMillan M; Shepherd A; Vaughan DG; Laxon S; McAdoo D (2009) Amundsen Sea Bathymetry: The Benefits of Using Gravity Data for Bathymetric Prediction. <i>IEEE Transactions on Geoscience and Remote Sensing</i>, <b>47</b> (12), pp. 4223-4228. <a href="http://dx.doi.org/10.1109/TGRS.2009.2023665"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Moreira CS; Brunet D; Verneyre L; Sá SMO; Galdos MV; Cerri CC; Bernoux M (2009) Near infrared spectroscopy for soil bulk density assessment. <i>European Journal of Soil Science</i>, <b>60</b> (5), pp. 785-791. <a href="http://dx.doi.org/10.1111/j.1365-2389.2009.01170.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Murray BJ; Wilson TW; Dobbie S; Cui ZQ; Al-Jumur SMRK; Mohler O; Schnaiter M; Wagner R; Benz S; Niemand M (2010) Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. <i>NAT GEOSCI</i>, <b>3</b> (4), pp. 233-237. <a href="http://dx.doi.org/10.1038/NGEO817"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Myhre G; Kvalevag M; Radel G; Cook J; Shine KP; Clark H; Karcher F; Markowicz K; Kardas A; Wolkenberg P (2009) Intercomparison of radiative forcing calculations of stratospheric water vapour and contrails. <i>Meteorologische Zeitschrift</i>, <b>18</b> (6), pp. 585-596. <a href="http://dx.doi.org/10.1127/0941-2948/2009/0411"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76989/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Palmer S; Shepherd A; Björnsson H; Pálsson F (2009) Ice velocity measurements of Langjökull, Iceland, from interferometric synthetic aperture radar (InSAR). <i>Journal of Glaciology</i>, <b>55</b> (193), pp. 834-838. <a href="http://dx.doi.org/10.3189/002214309790152573"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Palmer S; Shepherd A; Nienow P; Joughin I (2011) Seasonal speedup of the Greenland Ice Sheet linked to routing of surface water. <i>Earth and Planetary Science Letters</i>, <b>302</b> (3-4), pp. 423-428. <a href="http://dx.doi.org/10.1016/j.epsl.2010.12.037"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Palmer SJ; Shepherd A; Sundal A; Rinnem E; Nienow P (2010) InSAR observations of ice elevation and velocity fluctuations at the Flade Isblink ice cap, eastern North Greenland. <i>Journal of Geophysical Research</i>, <b>115</b> (F4). <a href="http://dx.doi.org/10.1029/2010JF001686"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Palmer SJ; Shepherd A; Sundal A; Rinnem E; Nienow P (2010) InSAR observations of ice elevation and velocity fluctuations at the Flade Isblink ice cap, eastern North Greenland. <i>J GEOPHYS RES-EARTH</i>, <b>115</b> , F04037. <a href="http://dx.doi.org/10.1029/2010JF001686"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Paul F; Bolch T; Kaeaeb A; Nagler T; Shepherd A; Strozzi T; IEEE (2012) SATELLITE-BASED GLACIER MONITORING IN THE ESA PROJECT GLACIERS_CCI. <i>2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)</i>, , pp. 3222-3225. <a href="http://dx.doi.org/10.1109/IGARSS.2012.6350738"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Payne AJ; Holland PR; Shepherd AP; Rutt IC; Jenkins A; Joughin I (2007) Numerical modeling of ocean-ice interactions under Pine Island Bay's ice shelf. <i>Journal of Geophysical Research: Oceans</i>, <b>112</b> (10). <a href="http://dx.doi.org/10.1029/2006JC003733"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Payne AJ; Holland PR; Shepherd AP; Rutt IC; Jenkins A; Joughin I (2007) Numerical modeling of ocean-ice interactions under Pine Island Bay's ice shelf. <i>Journal of Geophysical Research</i>, <b>112</b> (C10). <a href="http://dx.doi.org/10.1029/2006JC003733"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Payne AJ; Vieli A; Shepherd AP; Wingham DJ; Rignot E (2004) Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. <i>Geophysical Research Letters</i>, <b>31</b> (23). <a href="http://dx.doi.org/10.1029/2004GL021284"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Pope JO; Collins M; Haywood AM; Dowsett HJ; Hunter SJ; Lunt DJ; Pickering SJ; Pound MJ (2011) Quantifying Uncertainty in Model Predictions for the Pliocene (Plio-QUMP): Initial Results. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>309</b> (1-2), pp. 128-140. <a href="http://dx.doi.org/10.1016/j.palaeo.2011.05.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Pound MJ; Haywood AM; Salzmann U; Riding JB (2011) A Tortonian (Late Miocene, 11.61-7.25 Ma) global vegetation reconstruction. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>300</b> , pp. 29-45. <a href="http://dx.doi.org/10.1016/j.palaeo.2010.11.029"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Pound MJ; Haywood AM; Salzmann U; Riding JB (2012) Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97-5.33 Ma). <i>EARTH-SCIENCE REVIEWS</i>, <b>112</b> (1-2), pp. 1-22. <a href="http://dx.doi.org/10.1016/j.earscirev.2012.02.005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Rap A; Elliott L; Ingham DB; Lesnic D; Wen X (2007) The inverse source problem for the variable coefficients convection-diffusion equation. <i>INVERSE PROBL SCI EN</i>, <b>15</b> (5), pp. 413-440. <a href="http://dx.doi.org/10.1080/17415970600731274"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Rap A; Elliott L; Ingham DB; Lesnic D; Wen X (2006) An inverse source problem for the convection-diffusion equation. <i>INT J NUMER METHOD H</i>, <b>16</b> (2-3), pp. 125-150. <a href="http://dx.doi.org/10.1108/09615530610644235"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Rap A; Elliott L; Ingham DB; Lesnic D; Wen X (2004) DRBEM for Cauchy convection-diffusion problems with variable coefficients. <i>ENG ANAL BOUND ELEM</i>, <b>28</b> (11), pp. 1321-1333. <a href="http://dx.doi.org/10.1016/j.enganabound.2004.06.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Rap A; Forster PM; Haywood JM; Jones A; Boucher O (2010) Estimating the climate impact of linear contrails using the UK Met Office climate model. <i>Geophysical Research Letters</i>, <b>37</b> (20). <a href="http://dx.doi.org/10.1029/2010GL045161"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76987/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Rap A; Forster PM; Jones A; Boucher O; Haywood JM; Bellouin N; De Leon RR (2010) Parameterization of contrails in the UK Met Office climate model. <i>Journal of Geophysical Research Atmospheres</i>, <b>115</b> (10). <a href="http://dx.doi.org/10.1029/2009JD012443"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76988/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Rap A; Ghosh S; Smith MH (2009) Shepard and Hardy Multiquadric Interpolation Methods for Multicomponent Aerosol-Cloud Parameterization. <i>Journal of the Atmospheric Sciences</i>, <b>66</b> (1), pp. 105-115. <a href="http://dx.doi.org/10.1175/2008JAS2626.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76990/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Remedios J; Balzter H; Burrows J; Eves S; Johnson M; Lavender S; Monks P; O'Neill A; Shepherd A (2012) Earth observation: a revolutionary leap into the future. <i>Astronomy & Geophysics</i>, <b>53</b> (3), pp. 3.16-3.18. <a href="http://dx.doi.org/10.1111/j.1468-4004.2012.53316.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Riese M; Ploeger F; Rap A; Vogel B; Konopka P; Dameris M; Forster P (2012) Impact of uncertainties in atmospheric mixing on simulated UTLS composition and related radiative effects. <i>Journal of Geophysical Research D: Atmospheres</i>, <b>117</b> (16), D16305. <a href="http://dx.doi.org/10.1029/2012JD017751"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76983/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Rinne E; Shepherd A; Muir A; Wingham D (2011) A Comparison of Recent Elevation Change Estimates of the Devon Ice Cap as Measured by the ICESat and EnviSAT Satellite Altimeters. <i>IEEE Transactions on Geoscience and Remote Sensing</i>, <b>49</b> (6), pp. 1902-1910. <a href="http://dx.doi.org/10.1109/TGRS.2010.2096472"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Rinne EJ; Shepherd A; Palmer S; van den Broeke MR; Muir A; Ettema J; Wingham D (2011) On the recent elevation changes at the Flade Isblink Ice Cap, northern Greenland. <i>Journal of Geophysical Research</i>, <b>116</b> (F3). <a href="http://dx.doi.org/10.1029/2011JF001972"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Rinne EJ; Shepherd A; Palmer S; Van Den Broeke MR; Muir A; Ettema J; Wingham D (2011) On the recent elevation changes at the Flade Isblink Ice Cap, northern Greenland. <i>Journal of Geophysical Research: Earth Surface</i>, <b>116</b> (3). <a href="http://dx.doi.org/10.1029/2011JF001972"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Robinson MM; Valdes PJ; Haywood AM; Dowsett HJ; Hill DJ; Jones SM (2011) Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production. <i>Palaeogeography Palaeoclimatology Palaeoecology</i>, <b>309</b> (1-2), pp. 92-97. <a href="http://dx.doi.org/10.1016/j.palaeo.2011.01.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Salzmann U; Haywood AM; Lunt DJ (2009) The past is a guide to the future? Comparing Middle Pliocene vegetation with predicted biome distributions for the twenty-first century. <i>PHILOS T R SOC A</i>, <b>367</b> (1886), pp. 189-204. <a href="http://dx.doi.org/10.1098/rsta.2008.0200"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Salzmann U; Haywood AM; Lunt DJ; Valdes PJ; Hill DJ (2008) A new global biome reconstruction and data-model comparison for the Middle Pliocene. <i>GLOBAL ECOL BIOGEOGR</i>, <b>17</b> (3), pp. 432-447. <a href="http://dx.doi.org/10.1111/j.1466-8238.2008.00381.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Salzmann U; Williams M; Haywood AM; Johnson AAL; Kender S; Zalasiewicz J (2011) The climate and environment of a Pliocene warm world. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>309</b> (1-2), pp. 1-8. <a href="http://dx.doi.org/10.1016/j.palaeo.2011.05.044"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Schmidt A; Carslaw KS; Mann GW; Rap A; Pringle KJ; Spracklen DV; Wilson M; Forster PM (2012) Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate. <i>Atmospheric Chemistry and Physics</i>, <b>12</b> , pp. 7321-7339. <a href="http://dx.doi.org/10.5194/acp-12-7321-2012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76984/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Scroxton N; Bonham SJ; Rickaby REM; Lawrence SHF; Hermoso M; Haywood AM (2011) Persistent El Niño-Southern Oscillation variation during the Pliocene Epoch. <i>Paleoceanography</i>, <b>26</b> (PA2215). <a href="http://dx.doi.org/10.1029/2010PA002097"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shepherd A (2003) Larsen Ice Shelf Has Progressively Thinned. <i>Science</i>, <b>302</b> (5646), pp. 856-859. <a href="http://dx.doi.org/10.1126/science.1089768"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shepherd A (2004) Erratum: Larsen Ice Shelf has progressively thinned (Science (October 31) (856)). <i>Science</i>, <b>303</b> (5664), pp. 1612.
Shepherd A (2004) Larsen ice shelf has progressively thinned (vol 302, pg 856, 2003). <i>SCIENCE</i>, <b>303</b> (5664), pp. 1612-1612.
Shepherd A (2001) Inland Thinning of Pine Island Glacier, West Antarctica. <i>Science</i>, <b>291</b> (5505), pp. 862-864. <a href="http://dx.doi.org/10.1126/science.291.5505.862"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shepherd A (2006) Antarctica unravelled. <i>Physics World</i>, <b>19</b> (5), pp. 21-26. <a href="http://dx.doi.org/10.1088/2058-7058/19/5/32"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shepherd A (2012) A reconciled estimate of ice-sheet mass balance (vol 57, pg 88, 2010). <i>SCIENCE</i>, <b>338</b> (6114), pp. 1539-1539.
Shepherd A (2003) Ice shelf tidal motion derived from ERS altimetry. <i>Journal of Geophysical Research</i>, <b>108</b> (C6). <a href="http://dx.doi.org/10.1029/2001JC001152"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shepherd A (2009) Contamination of injection sites by landmark palpation after skin antisepsis. <i>Journal of Hospital Infection</i>, <b>71</b> (1), pp. 97-98. <a href="http://dx.doi.org/10.1016/j.jhin.2008.09.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shepherd A; Hubbard A; Nienow P; King M; McMillan M; Joughin I (2009) Greenland ice sheet motion coupled with daily melting in late summer. <i>Geophysical Research Letters</i>, <b>36</b> (1). <a href="http://dx.doi.org/10.1029/2008GL035758"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shepherd A; Ivins ER; A G; Barletta VR; Bentley MJ; Bettadpur S; Briggs KH; Bromwich DH; Forsberg R; Galin N (2012) A Reconciled Estimate of Ice-Sheet Mass Balance. <i>Science</i>, <b>338</b> (6111), pp. 1183-1189. <a href="http://dx.doi.org/10.1126/science.1228102"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shepherd A; Peacock NA (2003) Ice shelf tidal motion derived from ERS altimetry. <i>Journal of Geophysical Research C: Oceans</i>, <b>108</b> (6), pp. 29-21.
Shepherd A; Wingham D (2007) Recent Sea-Level Contributions of the Antarctic and Greenland Ice Sheets. <i>Science</i>, <b>315</b> (5818), pp. 1529-1532. <a href="http://dx.doi.org/10.1126/science.1136776"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shepherd A; Wingham D; Rignot E (2004) Warm ocean is eroding West Antarctic Ice Sheet. <i>Geophysical Research Letters</i>, <b>31</b> (23). <a href="http://dx.doi.org/10.1029/2004GL021106"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shepherd A; Wingham D; Wallis D; Giles K; Laxon S; Sundal AV (2012) Correction to “Recent loss of floating ice and the consequent sea level contribution”. <i>Geophysical Research Letters</i>, <b>39</b> (17), pp. n/a-n/a. <a href="http://dx.doi.org/10.1029/2012GL053573"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shepherd A; Wingham D; Wallis D; Giles K; Laxon S; Sundal AV (2010) Recent loss of floating ice and the consequent sea level contribution. <i>Geophysical Research Letters</i>, <b>37</b> (13). <a href="http://dx.doi.org/10.1029/2010GL042496"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shepherd A; Wingham D; Wallis D; Giles K; Laxon S; Sundal AV (2010) Recent loss of floating ice and the consequent sea level contribution. <i>Geophysical Research Letters</i>, <b>37</b> (13), pp. n/a-n/a. <a href="http://dx.doi.org/10.1029/2010GL042496"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shepherd A; Wingham DJ (2008) Antarctic glacier thinning, 1992–2003. <i>Scottish Geographical Journal</i>, <b>124</b> (2-3), pp. 154-164. <a href="http://dx.doi.org/10.1080/14702540802441144"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shepherd A; Wingham DJ; Mansley JAD (2002) Inland thinning of the Amundsen Sea sector, West Antarctica. <i>Geophysical Research Letters</i>, <b>29</b> (10), pp. 2-1-2-4. <a href="http://dx.doi.org/10.1029/2001GL014183"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Sime LC; Tindall JC; Wolff EW; Connolley WM; Valdes PJ (2008) Antarctic isotopic thermometer during a CO<inf>2</inf> forced warming event. <i>Journal of Geophysical Research Atmospheres</i>, <b>113</b> (24). <a href="http://dx.doi.org/10.1029/2008JD010395"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Sime LC; Wolff EW; Oliver KIC; Tindall JC (2009) Evidence for warmer interglacials in East Antarctic ice cores. <i>Nature</i>, <b>462</b> (7271), pp. 342-345. <a href="http://dx.doi.org/10.1038/nature08564"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Slee B; Whitfield R; Whitfield S (2011) Discourses of power: The development of small-scale hydropower in North East Scotland. <i>Rural Society</i>, <b>21</b> (1), pp. 54-64. <a href="http://dx.doi.org/10.5172/rsj.2011.21.1.54"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Smellie JL; Haywood AM; Hillenbrand CD; Lunt DJ; Valdes PJ (2009) Nature of the Antarctic Peninsula Ice Sheet during the Pliocene: Geological evidence and modelling results compared. <i>EARTH-SCI REV</i>, <b>94</b> (1-4), pp. 79-94. <a href="http://dx.doi.org/10.1016/j.earscirev.2009.03.005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Spracklen D; Carslaw K; Pöschl U; Rap A; Forster PM (2011) Global cloud condensation nuclei influenced by carbonaceous combustion aerosol. <i>Atmospheric Chemistry and Physics</i>, <b>11</b> (17), pp. 9067-9087. <a href="http://dx.doi.org/10.5194/acp-11-9067-2011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/43229/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Spracklen DV; Jimenez JL; Carslaw KS; Worsnop DR; Evans MJ; Mann GW; Zhang Q; Canagaratna MR; Allan J; Coe H (2011) Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. <i>Atmospheric Chemistry and Physics</i>, <b>11</b> (23), pp. 12109-12136. <a href="http://dx.doi.org/10.5194/acp-11-12109-2011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76985/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Sundal AV; Shepherd A; Nienow P; Hanna E; Palmer S; Huybrechts P (2009) Evolution of supra-glacial lakes across the Greenland Ice Sheet. <i>Remote Sensing of Environment</i>, <b>113</b> (10), pp. 2164-2171. <a href="http://dx.doi.org/10.1016/j.rse.2009.05.018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Sundal AV; Shepherd A; Nienow P; Hanna E; Palmer S; Huybrechts P (2011) Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. <i>Nature</i>, <b>469</b> (7331), pp. 521-524. <a href="http://dx.doi.org/10.1038/nature09740"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Tang DF; Dobbie S (2011) iGen 0.1: the automated generation of a parameterisation of entrainment in marine stratocumulus. <i>GEOSCI MODEL DEV</i>, <b>4</b> (3), pp. 797-807. <a href="http://dx.doi.org/10.5194/gmd-4-797-2011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Tang DF; Dobbie S (2011) iGen 0.1: a program for the automated generation of models and parameterisations. <i>GEOSCI MODEL DEV</i>, <b>4</b> (3), pp. 785-795. <a href="http://dx.doi.org/10.5194/gmd-4-785-2011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Taylor SP; Haywood AM; Valdes PJ; Sellwood BW (2004) An evaluation of two spatial interpolation techniques in global sea-surface temperature reconstructions: Last Glacial Maximum and Pliocene case studies. <i>Quaternary Science Reviews</i>, <b>23</b> (9-10), pp. 1041-1051. <a href="http://dx.doi.org/10.1016/j.quascirev.2003.12.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Tindall J; Flecker R; Valdes P; Schmidt DN; Markwick P; Harris J (2010) Modelling the oxygen isotope distribution of ancient seawater using a coupled ocean-atmosphere GCM: Implications for reconstructing early Eocene climate. <i>Earth and Planetary Science Letters</i>, <b>292</b> (3-4), pp. 265-273. <a href="http://dx.doi.org/10.1016/j.epsl.2009.12.049"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Tindall JC; Thuburn J; Highwood EJ (2006) Equatorial waves in the lower stratosphere. II: Annual and interannual variability. <i>Quarterly Journal of the Royal Meteorological Society</i>, <b>132</b> (614), pp. 195-212. <a href="http://dx.doi.org/10.1256/qj.04.153"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Tindall JC; Thuburn J; Highwood EJ (2006) Equatorial waves in the lower stratosphere. I: A novel detection method. <i>Quarterly Journal of the Royal Meteorological Society</i>, <b>132</b> (614), pp. 177-194. <a href="http://dx.doi.org/10.1256/qj.04.152"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Tindall JC; Valdes PJ (2011) Modeling the 8.2ka event using a coupled atmosphere-ocean GCM. <i>Global and Planetary Change</i>, <b>79</b> (3-4), pp. 312-321. <a href="http://dx.doi.org/10.1016/j.gloplacha.2011.02.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Tindall JC; Valdes PJ; Sime LC (2009) Stable water isotopes in HadCM3: Isotopic signature of El Niño-Southern Oscillation and the tropical amount effect. <i>Journal of Geophysical Research Atmospheres</i>, <b>114</b> (4). <a href="http://dx.doi.org/10.1029/2008JD010825"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Tompkins AM; Parker DJ; Danour S; Amekudzi L; Bain CL; Dominguez A; Douglas MW; Fink AH; Grimes DIF; Hobby M (2012) Capacity building in meteorological education and research-lessons learned and future prospects. <i>Bulletin of the American Meteorological Society</i>, <b>93</b> (5), pp. 595-601. <a href="http://dx.doi.org/10.1175/BAMS-D-11-00098.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76594/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Vaidya DB; Gupta R; Dobbie JS; Chylek P (2001) Interstellar extinction by composite grains. <i>ASTRON ASTROPHYS</i>, <b>375</b> (2), pp. 584-590. <a href="http://dx.doi.org/10.1051/0004-6361:20010867"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Vaughan DG; Corr HFJ; Smith AM; Pritchard HD; Shepherd A (2008) Flow-switching and water piracy between Rutford Ice Stream and Carlson Inlet, West Antarctica. <i>Journal of Glaciology</i>, <b>54</b> (184), pp. 41-48. <a href="http://dx.doi.org/10.3189/002214308784409125"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Vieli A; Payne AJ; Shepherd A; Du Z (2007) Causes of pre-collapse changes of the Larsen B ice shelf: Numerical modelling and assimilation of satellite observations. <i>Earth and Planetary Science Letters</i>, <b>259</b> (3-4), pp. 297-306. <a href="http://dx.doi.org/10.1016/j.epsl.2007.04.050"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Whitfield S (2012) Evidence-based agricultural policy in Africa: critical reflection on an emergent discourse. <i>Outlook on Agriculture: an international review of agricultural science, economics and policy</i>, <b>41</b> (4), pp. 249-256. <a href="http://dx.doi.org/10.5367/oa.2012.0101"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82387/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Whitfield S (2012) Open Educational Resources: the challenges of ‘usability’ and copyright clearance. <i>Planet</i>, (25), pp. 51-54. <a href="http://dx.doi.org/10.11120/plan.2012.00250051"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Whitfield S (2011) Deliberative assessment in complex socioecological systems: recommendations for environmental assessment in drylands. <i>Environmental Monitoring and Assessment</i>, <b>183</b> (1-4), pp. 465-483. <a href="http://dx.doi.org/10.1007/s10661-011-1933-x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Whitfield S; Reed MS (2012) Participatory environmental assessment in drylands: Introducing a new approach. <i>Journal of Arid Environments</i>, <b>77</b> , pp. 1-10. <a href="http://dx.doi.org/10.1016/j.jaridenv.2011.09.015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Whitfield S; Reed MS; Thomson K; Christie M; Stringer L; Quinn CH; Anderson R; Moxey A; Hubacek K (2011) Managing peatland ecosystem services: current UK policy and future challenges in a changing world. <i>Scottish Geographical Journal</i>, <b>127</b> (3), pp. 209-230. <a href="http://dx.doi.org/10.1080/14702541.2011.616864"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Williams M; Haywood AM; Harper EM; Johnson ALA; Knowles T; Leng MJ; Lunt DJ; Okamura B; Taylor PD; Zalasiewicz J (2009) Pliocene climate and seasonality in North Atlantic shelf seas. <i>PHILOS T R SOC A</i>, <b>367</b> (1886), pp. 85-108. <a href="http://dx.doi.org/10.1098/rsta.2008.0224"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Williams M; Haywood AM; Hillenbrand CD; Wilkinson IP (2005) Efficacy of delta18O data from Pliocene planktonic foraminifer calcite for spatial sea surface temperature reconstruction: comparison with a fully coupled ocean-atmosphere GCM and fossil assemblage data for the mid-Pliocene. <i>Geological Magazine</i>, <b>142</b> (4), pp. 399-417. <a href="http://dx.doi.org/10.1017/S0016756805000828"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Williams M; Haywood AM; Taylor SP; Valdes PJ; Sellwood BW; Hillenbrand CD (2005) Evaluating the efficacy of planktonic foraminifer calcite delta18O data for sea surface temperature reconstruction for the Late Miocene. <i>Geobios</i>, <b>38</b> (6), pp. 843-863. <a href="http://dx.doi.org/10.1016/j.geobios.2004.12.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Williams M; Haywood AM; Taylor SP; Valdes PJ; Sellwood BW; Hillenbrand CD (2005) Evaluating the efficacy of planktonic foraminifer calcite δ<sup>18</sup>O data for sea surface temperature reconstruction for the Late Miocene. <i>Geobios</i>, <b>38</b> (6), pp. 843-863. <a href="http://dx.doi.org/10.1016/j.geobios.2004.12.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Williams M; Haywood AM; Vautravers M; Sellwood BW; Hillenbrand CD; Wilkinson IP; Miller CG (2007) Relative effect of taphonomy on calcification temperature estimates from fossil planktonic foraminifera. <i>GEOBIOS-LYON</i>, <b>40</b> (6), pp. 861-874. <a href="http://dx.doi.org/10.1016/j.geobios.2007.02.007"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Williams M; Nelson AE; Smellie JL; Leng MJ; Johnson ALA; Jarram DR; Haywood AM; Peck VL; Zalasiewicz J; Bennett C (2010) Sea ice extent and seasonality for the Early Pliocene northern Weddell Sea. <i>PALAEOGEOGR PALAEOCL</i>, <b>292</b> (1-2), pp. 306-318. <a href="http://dx.doi.org/10.1016/j.palaeo.2010.04.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wilson TW; Murray BJ; Wagner R; Moehler O; Saathoff H; Schnaiter M; Skrotzki J; Price HC; Malkin TL; Dobbie S (2012) Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures. <i>ATMOSPHERIC CHEMISTRY AND PHYSICS</i>, <b>12</b> (18), pp. 8611-8632. <a href="http://dx.doi.org/10.5194/acp-12-8611-2012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wingham DJ; Siegert MJ; Shepherd A; Muir AS (2006) Rapid discharge connects Antarctic subglacial lakes. <i>Nature</i>, <b>440</b> (7087), pp. 1033-1036. <a href="http://dx.doi.org/10.1038/nature04660"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wingham DJ; Wallis DW; Shepherd A (2009) Spatial and temporal evolution of Pine Island Glacier thinning, 1995–2006. <i>Geophysical Research Letters</i>, <b>36</b> (17). <a href="http://dx.doi.org/10.1029/2009GL039126"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wingham DJ; Wallis DW; Shepherd A (2009) Spatial and temporal evolution of Pine Island Glacier thinning, 1995-2006. <i>Geophysical Research Letters</i>, <b>36</b> (17). <a href="http://dx.doi.org/10.1029/2009GL039126"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Yang H; Dobbie JSE; Mace GG; Ross A; Quante M (2012) GEWEX Cloud System Study (GCSS) cirrus cloud working group: development of an observation-based case study for model evaluation. <i>Geoscientific Model Development</i>, <b>5</b> , pp. 829-843. <a href="http://dx.doi.org/10.5194/gmd-5-829-2012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Yang H; Dobbie S; Herbert R; Connolly P; Gallagher M; Ghosh S; Al-Jumur SMRK; Clayton J (2012) The effect of observed vertical structure, habits, and size distributions on the solar radiative properties and cloud evolution of cirrus clouds. <i>Quarterly Journal of the Royal Meteorological Society</i>, <b>138</b> (666), pp. 1221-1232. <a href="http://dx.doi.org/10.1002/qj.973"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Zalasiewicz J; Williams M; Haywood A; Ellis M (2011) The anthropocene: A new epoch of geological time?. <i>Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences</i>, <b>369</b> (1938), pp. 835-841.
Zalasiewicz J; Williams W; Haywood AM; Ellis M (2011) The Anthropocene: a new epoch of geological time?. <i>Philosophical Transactions of the Royal Society of London</i>, <b>Series A</b> (369), pp. 835-841. <a href="http://dx.doi.org/10.1098/rsta.2010.0339"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bowen A; Forster PM; Gouldson A; Hubacek K; Martin R; O'Neill DW; Rap A; Rydge J (2009) <i>The implications of the economic slowdown for greenhouse gas emissions and targets</i> .
Dobbie J (1998) <i>SWIFT: Stratospheric Wind Interferometer for Transport Studies.</i> Final report, p. 1-57.
Hill DJ; Haywood AM; Lunt DJ; Otto-Bliesner BL; Harrison SP; Braconnot P (2012) <i>Paleoclimate modeling: an integrated component of climate change science</i> PAGES Newsletter, p. 103.
Lacy C; Harwood D; Levy R; Haywood AM (2002) <i>Future of Antarctic Margin Drilling: developing a science plan for McMurdo Sound</i> ANDRILL Contribution.

No publications to show.