Research project
ELEVATE
- Start date: 1 June 2021
- End date: 31 May 2025
- Funder: EPSRC
- Value: £1,707,997
- Partners and collaborators: University of Brighton, University of Oxford, Technical University of Eindhoven, Technical University of Dortmund
- Primary investigator: Dr Ian Philips
- Co-investigators: Professor Jillian Anable
- External co-investigators: Christian Brand, Mary Darking, Sally Cairns, Frauke Behrendt, Eva Heinen
ELEVATE (Innovative Light ELEctric Vehicles for Active and Digital TravEl)
The Project team
Dr Ian Philips (PI), Prof Jillian Anable, [University of Leeds]
Dr Noel Cass, Dr Alice de Sejournet, Prof Christian Brand, Dr Labib Azzouz, [University of Oxford]
Dr Mary Darking, Dr Sally Cairns Dr Nick Marks. [University of Brighton]
Prof Eva Heinen, [Visiting Professor, ITS Leeds]
Assoc Prof Dr Frauke Behrendt, Clara Glachant [TU Eindhoven]
Further information contact: i.philips@leeds.ac.uk
What is the aim of the project?
The project aim is to understand the potential of existing and new forms of e-micromobility, (e.g. e-cargo bikes, e-bikes and e-scooters) including identifying the people, places and circumstances where they will be most useful, in order to reduce mobility-related energy demand and carbon emissions while improving people's health. Read our blog on this.
Our objectives are:
- Assess the potential uptake of e-micromobility, accounting for individual attitudes but also the policy and governance environment.
- Understand the decarbonisation potential of e-micromobility.
- Understand barriers and enablers of uptake of e-micromobility (specifically e-cargo bikes)
- Evaluate impacts of e-micromobility (especially e-cargo bikes) on physical and mental health and wellbeing
- Share insights into e-micromobility with users and potential users, policy makers, industry and third sector organisations.
What have we done?
For ongoing information about how our project is progressing please click here
We have carried out mixed-methods research trials which ran in Leeds, Brighton and Oxford. We have gathered and are analysing both quantitative and qualitative data from these research trials. Given the context of their neighbourhood transport and other available transport methods, we are using this data to build an understanding of the potential for households who have access to e-micromobility vehicles to reduce their transport carbon emissions. Data collected so far includes: Surveys, semi-structured interviews, travel diaries, GPS traces, social media interactions and researcher reflections. Also surveys, semi-structured interviews, travel diaries, GPS traces, social media interactions and researcher reflections.
Additionally, we have conducted stakeholder interviews with policymakers, local authority officers and people from third sector organisations. We have also attended e-bike industry events and we have carried out a Nationally representative survey of 2000 people asking about their use of and attitude towards e-bikes, e-cargo bikes and e-scooters. Read our blog on what the survey told us.
Current work
Much of the work we have done has already been presented at conferences and events. We have also written a number of blogs on work in progress.
Members of the team have produced the following papers early in the project:
• Philips I, Brown L, Cass N. 2024. E-bike use and ownership in the Lake District National-Park UK. Journal of Transport Geography. https://doi.org/10.1016/j.jtrangeo.2024.103813
• Behrendt, F.; Heinen, E.; Brand, C.; Cairns, S.; Anable, J.; Azzouz, L. Conceptualizing Micromobility. Preprints 2022, 2022090386 https://www.preprints.org/manuscript/202209.0386/v1.
• Brand C, Dekker H-J and Behrendt F (2022) Cycling, climate change and air pollution. Advances in Transport Policy and Planning (doi.org/10.1016/bs.atpp.2022.04.010)
This is part of our work on understanding the context and concepts of e-micromobility and, exploring the supply side, such as the technology used these vehicles and the governance issues relating to parking, storage and other infrastructure.
• We have undertaken interviews with people who own and use their own scooters in the UK, which is currently illegal but increasingly commonplace. This forms part of our work to understand the demand side of e-micromobility, i.e. the utilisation pathways, barriers to adoption, expectations and experiences of existing (early adopter) users, through surveys, interviews, analysis of online material, and evaluation of case studies.
• We have helped to expand the World Health Organisation’s Health Economic Assessment Tool (HEAT) to include e-bikes.
Overview
Overview
An overview of some of our activities are as follows:
- We are designing surveys and research trials to run in Leeds, Brighton and Oxford in 2023 and 2024. These will be the main empirical focus of the project. We will gather both quantitative and qualitative data to build an understanding of the potential for households who have access to e-micromobility vehicles to reduce their transport carbon emissions, given the context of their neighbourhood and other available modes of transport.
Members of the team have produced the following papers early in the project:
- Behrendt, F.; Heinen, E.; Brand, C.; Cairns, S.; Anable, J.; Azzouz, L. Conceptualizing Micromobility. Preprints 2022, 2022090386 https://www.preprints.org/manuscript/202209.0386/v1.
- Brand C, Dekker H-J and Behrendt F (2022) Cycling, climate change and air pollution. Advances in Transport Policy and Planning (doi.org/10.1016/bs.atpp.2022.04.010)
This is part of our work on understanding the context and concepts of e-micromobility and, exploring the supply side, such as the technology used in light electric vehicles and the governance issues relating to parking, storage and other infrastructure.
- We have undertaken interviews with people who own and use their own scooters in the UK, which is currently illegal but increasingly commonplace. This forms part of our work to understand the demand side of e-micromobility, i.e. the utilisation pathways, barriers to adoption, expectations and experiences of existing (early adopter) users, through surveys, interviews, analysis of online material, and evaluation of case studies.
- We will develop a transport energy environment systems model for calculating the life cycle energy use and carbon emissions of light electric vehicles for active travel, and assess the potential for emission and energy savings when these substitute for other modes of transport.
- We will help to expand the World Health Organisation’s Health Economic Assessment Tool (HEAT) to include e-bikes and other forms of e-micromobility.
Things we will do
We will develop a transport energy environment systems model for calculating the life cycle energy use and carbon emissions of electric micromobility, and assess the potential for emission and energy savings when these substitute for other modes of transport.
Why are we doing this?
The UK transport sector lags behind other sectors in its achievement of carbon emission reductions to date. The Committee on Climate Change has been critical of this failure, and sees an important part of the solution as rapidly increasing rates of walking and cycling, and identifying an appropriate role for vehicles such as e-bikes and e-scooters.
There is now no realistic pathway for reaching the 2030 decarbonisation targets for transport without a 20-30% reduction in car use.
There are a wide range of emerging innovative light electric vehicle technologies for active travel, including e-bikes, e-scooters, e-cargo bikes, e-skateboards, e-trikes, e-quadricycles, e-hoverboards etc. These usually involve both electrical assistance and some energy expenditure by the user. Their power source provides the opportunity to link to a variety of digital technologies - from unlocking shared vehicles, to 'track-and-trace' systems for delivery companies, to map systems or health feedback tools for users.
Compared to other countries, the UK is not advanced in its uptake of a range of innovative light vehicles and related digital technologies for both passenger and freight applications. Theoretically, if these vehicles are used to switch from car and van use, there is significant potential for reducing mobility-related energy demand and carbon emissions, and many might also generate health benefits for users. However, there is uncertainty about how people in different types of places would actually use these modes and how these modes would affect overall travel behaviour, physical activity and energy demand in practice.
This £1.7 million project is part of the CREDS research community and funded by UK Research and Innovation (Grant reference: UKRI EP/S030700/1)
Follow ELEVATE on social media
Our Leeds facebook page is http://www.facebook.com/ELEVATELeeds
Our twitter handle is @_Micromobility_ https://twitter.com/_Micromobility_
Our Instagram page is: elevatemicromobility