Publications

Palaeo@Leeds

To search for phrases, use quotation marks: "climate change smith"
To search for combinations of words, separate them by "AND" or "+": climate + change + Smith
If you don't use either of the above, the search will run on ANY keyword.

    <li><a href='#' data-type="all" class="active">All types</a></li><li><a href='#' data-type="book">Book</a></li><li><a href='#' data-type="chapter">Chapter</a></li><li><a href='#' data-type="conference-paper">Conference paper</a></li><li><a href='#' data-type="dataset">Dataset</a></li><li><a href='#' data-type="internet-publication">Internet publication</a></li><li><a href='#' data-type="journal-article">Journal article</a></li><li><a href='#' data-type="other">Other</a></li><li><a href='#' data-type="report">Report</a></li>
    <li><a href='#' class='active' data-year='all'>All dates</a></li><li><a href='#' data-year="2019">2019</a></li><li><a href='#' data-year="2018">2018</a></li><li><a href='#' data-year="2017">2017</a></li><li><a href='#' data-year="2016">2016</a></li><li><a href='#' data-year="2015">2015</a></li><li><a href='#' data-year="2014">2014</a></li><li><a href='#' data-year="2013">2013</a></li><li><a href='#' data-year="2012">2012 &amp; previous</a></li>

2019

Hill DJ (2019) Climate change and the rise of the central Asian Silk Roads. <i>In:</i> Yang LE; Bork H-R; Fang X; Mischke S eds. <i>Socio-Environmental Dynamics along the Historical Silk Road</i>, Springer, Cham, pp. 247-259. <a href="http://dx.doi.org/10.1007/978-3-030-00728-7_12"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131262/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Aldmour ST; Burke IT; Bray AW; Baker DL; Ross AB; Gill FL; Cibin G; Ries ME; Stewart DI (2019) Abiotic reduction of Cr(VI) by humic acids derived from peat and lignite: kinetics and removal mechanism. <i>Environmental Science and Pollution Research</i>, <b>26</b> (5), pp. 4717-4729. <a href="http://dx.doi.org/10.1007/s11356-018-3902-1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/139450/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Allen BJ; Stubbs TL; Benton MJ; Puttick MN (2019) Archosauromorph extinction selectivity during the Triassic–Jurassic mass extinction. <i>Palaeontology</i>, <b>62</b> (2), pp. 211-224. <a href="http://dx.doi.org/10.1111/pala.12399"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/136120/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Atar E; Maerz C; Aplin A; Dellwig O; Herringshaw L; Lamoureux-Var V; Leng MJ; Schnetger B; Wagner T (2019) Dynamic climate-driven controls on the deposition of the Kimmeridge Clay Formation in the Cleveland Basin, Yorkshire, UK. <i>Climate of the Past Discussions</i>, . <a href="http://dx.doi.org/10.5194/cp-2018-172"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/142720/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Atkinson JW; Wignall PB; Morton JD; Aze T (2019) Body size changes in bivalves of the family Limidae in the aftermath of the end‐Triassic mass extinction: the Brobdingnag effect. <i>Palaeontology</i>, . <a href="http://dx.doi.org/10.1111/pala.12415"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/140892/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Banwart S; Nikolaidis NP; Zhu Y-G; Peacock C; Sparks D (2019) Soil Functions: Connecting Earth's Critical Zone. <i>Annual Review of Earth and Planetary Sciences</i>, . <a href="http://eprints.whiterose.ac.uk/139169/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Chen Y; Ye Q; Jiang HS; Wignall P; Yuan JL (2019) Conodonts and carbon isotopes during the Permian-Triassic transition on the Napo Platform, South China. <i>Journal of Earth Science</i>, <b>30</b> (2), pp. 244-257. <a href="http://dx.doi.org/10.1007/s12583-018-0884-3"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/140796/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Cookson E; Hill DJ; Lawrence D (2019) Impacts of long term climate change during the collapse of the Akkadian Empire. <i>Journal of Archaeological Science</i>, <b>106</b> , pp. 1-9. <a href="http://dx.doi.org/10.1016/j.jas.2019.03.009"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/145596/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Cooper CL; Swindles GT; Watson EJ; Savov IP; Galka M; Gallego-Sala A; Borken W (2019) Evaluating tephrochronology in the permafrost peatlands of Northern Sweden. <i>Quaternary Geochronology</i>, <b>50</b> , pp. 16-28. <a href="http://dx.doi.org/10.1016/j.quageo.2018.11.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138132/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dal Corso J; Ruffell A; Preto N (2019) Carnian (Late Triassic) C-isotope excursions, environmental changes, and biotic turnover: a global perturbation of the Earth's surface system. <i>Journal of the Geological Society</i>, <b>176</b> (1), pp. 129-131. <a href="http://dx.doi.org/10.1144/jgs2018-217"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/143411/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dentith JE; Ivanovic RF; Gregoire LJ; Tindall JC; Smith RS (2019) Ocean circulation drifts in multi-millennial climate simulations: the role of salinity corrections and climate feedbacks. <i>Climate Dynamics</i>, <b>52</b> (3-4), pp. 1761-1781. <a href="http://dx.doi.org/10.1007/s00382-018-4243-y"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/130530/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Eyong JT; Gabriel N; Moïse B; Hell VJ; Eric BE; Wignall P; Best J (2019) Sedimentologic and palaeoenvironmental evolution of the Mamfe Cretaceous Basin (SW Cameroon): Evidence from lithofacies analysis, tectonics and evaporite minerals suite. <i>Journal of African Earth Sciences</i>, <b>149</b> , pp. 19-41. <a href="http://dx.doi.org/10.1016/j.jafrearsci.2018.07.022"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Faggetter LE; Wignall PB; Pruss SB; Jones DS; Grasby S; Widdowson M; Newton RJ (2019) Mercury chemostratigraphy across the Cambrian Series 2 – Series 3 boundary: evidence for increased volcanic activity coincident with extinction?. <i>Chemical Geology</i>, <b>510</b> , pp. 188-199. <a href="http://dx.doi.org/10.1016/j.chemgeo.2019.02.006"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/144658/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Georgieva MN; Little CTS; Watson JS; Sephton MA; Ball AD; Glover AG (2019) Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps. <i>Journal of Systematic Palaeontology</i>, <b>17</b> (4), pp. 287-329. <a href="http://dx.doi.org/10.1080/14772019.2017.1412362"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/124287/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Georgieva MN; Paull CK; Little CT; McGann M; Sahy D; Condon D; Lundsten L; Pewsey J; Caress DW; Vrijenhoek RC (2019) Discovery of an extensive deep-sea fossil serpulid reef associated with a cold seep, Santa Monica Basin, California. <i>Frontiers in Marine Science</i>, <b>6</b> , 115. <a href="http://dx.doi.org/10.3389/fmars.2019.00115"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/143080/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Huang Y; Chen ZQ; Wignall PB; Grasby SE; Zhao L; Wang X; Kaiho K (2019) Biotic responses to volatile volcanism and environmental stresses over the Guadalupian-Lopingian (Permian) transition. <i>Geology</i>, <b>47</b> (2), pp. 175-178. <a href="http://dx.doi.org/10.1130/G45283.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/142783/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Jones MD; Abu-Jaber N; AlShdaifat A; Baird D; Cook BI; Cuthbert MO; Dean JR; Djamali M; Eastwood W; Fleitmann D (2019) 20,000 years of societal vulnerability and adaptation to climate change in southwest Asia. <i>Wiley Interdisciplinary Reviews: Water</i>, <b>6</b> (2), e1330. <a href="http://dx.doi.org/10.1002/wat2.1330"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138621/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Li H; Jiang H; Chen Y; Wignall PB; Wu B; Zhang Z; Zhang M; Ouyang Z; Lai X (2019) Smithian platform-bearing gondolellid conodonts from Yiwagou Section, northwestern China and implications for their geographic distribution in the Early Triassic. <i>Journal of Paleontology</i>, <b>93</b> (3), pp. 496-511. <a href="http://dx.doi.org/10.1017/jpa.2018.93"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Mills BJW; Krause AJ; Scotese CR; Hill DJ; Shields GA; Lenton TM (2019) Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. <i>Gondwana Research</i>, <b>67</b> , pp. 172-186. <a href="http://dx.doi.org/10.1016/j.gr.2018.12.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/139828/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ossa Ossa F; Hofmann A; Spangenberg JE; Poulton SW; Stüeken EE; Schoenberg R; Eickmann B; Wille M; Butler M; Bekker A (2019) Limited oxygen production in the Mesoarchean ocean. <i>Proceedings of the National Academy of Sciences</i>, <b>116</b> (14), pp. 6647-6652. <a href="http://dx.doi.org/10.1073/pnas.1818762116"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Panfili G; Cirilli S; Corso JD; Bertrand H; Medina F; Youbi N; Marzoli A (2019) New biostratigraphic constraints show rapid emplacement of the Central Atlantic Magmatic Province (CAMP) during the end-Triassic mass extinction interval. <i>Global and Planetary Change</i>, <b>172</b> , pp. 60-68. <a href="http://dx.doi.org/10.1016/j.gloplacha.2018.09.009"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Prescott C; Haywood A; Dolan A; Hunter S; Tindall J (2019) Indian monsoon variability in response to orbital forcing during the late Pliocene. <i>Global and Planetary Change</i>, <b>173</b> , pp. 33-46. <a href="http://dx.doi.org/10.1016/j.gloplacha.2018.12.002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/140196/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Pruss SB; Jones DS; Fike DA; Tosca NJ; Wignall PB (2019) Marine anoxia and sedimentary mercury enrichments during the Late Cambrian SPICE event in northern Scotland. <i>GEOLOGY</i>, <b>47</b> (5), pp. 475-478. <a href="http://dx.doi.org/10.1130/G45871.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/146235/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Qiu Z; Song H; Hu C; Wignall PB; Song H (2019) Carbonate thermoluminescence and its implication for marine productivity change during the Permian-Triassic transition. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>526</b> , pp. 72-79. <a href="http://dx.doi.org/10.1016/j.palaeo.2019.04.021"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Rabizadeh T; Morgan DJ; Peacock CL; Benning LG (2019) Effectiveness of Green Additives vs Poly(acrylic acid) in Inhibiting Calcium Sulfate Dihydrate Crystallization. <i>Industrial and Engineering Chemistry Research</i>, <b>58</b> (4), pp. 1561-1569. <a href="http://dx.doi.org/10.1021/acs.iecr.8b02904"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/143380/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Rotaru A-E; Posth NR; Löscher CR; Miracle MR; Vicente E; Cox RP; Thompson J; Poulton SW; Thamdrup B (2019) Interspecies interactions mediated by conductive minerals in the sediments of the Iron rich Meromictic Lake La Cruz, Spain. <i>Limnetica</i>, <b>38</b> (1), pp. 21-40. <a href="http://dx.doi.org/10.23818/limn.38.10"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/139117/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Smolarek-Lach J; Marynowski L; Trela W; Wignall PB (2019) Mercury Spikes Indicate a Volcanic Trigger for the Late Ordovician Mass Extinction Event: An Example from a Deep Shelf of the Peri-Baltic Region. <i>Scientific Reports</i>, <b>9</b> (1), 3139. <a href="http://dx.doi.org/10.1038/s41598-019-39333-9"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/143242/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Song H; Wignall PB; Song H; Dai X; Chu D (2019) Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. <i>Journal of Earth Science</i>, <b>30</b> (2), pp. 236-243. <a href="http://dx.doi.org/10.1007/s12583-018-1002-2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
van de Schootbrugge B; Richoz S; Pross J; Luppold FW; Hunze S; Wonik T; Blau J; Meister C; van der Weijst CMH; Suan G (2019) The Schandelah Scientific Drilling Project: A 25-million year record of Early Jurassic palaeo-environmental change from northern Germany. <i>Newsletters on Stratigraphy</i>, <b>52</b> (3), pp. 249-296. <a href="http://dx.doi.org/10.1127/nos/2018/0259"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/137405/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Voarintsoa NRG; Matero ISO; Railsback LB; Gregoire L; Tindall J; Sime L; Cheng H; Edwards RL; Brook GA; Kathayat G (2019) Investigating the 8.2 ka event in northwestern Madagascar: Insight from data–model comparisons. <i>Quaternary Science Reviews</i>, <b>204</b> , pp. 172-186. <a href="http://dx.doi.org/10.1016/j.quascirev.2018.11.030"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/139900/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wu Z; Peacock CL; Lanson B; Yin H; Zheng L; Chen Z; Tan W; Qiu G; Liu F; Feng X (2019) Transformation of Co-containing birnessite to todorokite: Effects of Co on the transformation and implications for Co mobility. <i>Geochimica et Cosmochimica Acta</i>, <b>246</b> , pp. 21-40. <a href="http://dx.doi.org/10.1016/j.gca.2018.11.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/139166/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Xiong Y; Guilbaud R; Peacock CL; Cox RP; Canfield DE; Krom MD; Poulton SW (2019) Phosphorus cycling in Lake Cadagno, Switzerland: A low sulfate euxinic ocean analogue. <i>Geochimica et Cosmochimica Acta</i>, <b>251</b> , pp. 116-135. <a href="http://dx.doi.org/10.1016/j.gca.2019.02.011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/142512/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Xue Q; Ran Y; Tan Y; Peacock CL; Du H (2019) Arsenite and Arsenate Binding to Ferrihydrite Organo-Mineral Coprecipitate: Implications for Arsenic Mobility and Fate in Natural Environments. <i>Chemosphere</i>, <b>224</b> , pp. 103-110. <a href="http://dx.doi.org/10.1016/j.chemosphere.2019.02.118"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/143041/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ye L; März C; Polyak L; Yu X; Zhang W (2019) Dynamics of Manganese and Cerium Enrichments in Arctic Ocean Sediments: A Case Study From the Alpha Ridge. <i>Frontiers in Earth Science</i>, <b>6</b> , 236. <a href="http://dx.doi.org/10.3389/feart.2018.00236"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/139573/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Zhang B; Yao S; Wignall PB; Hu W; Liu B; Ren Y (2019) New timing and geochemical constraints on the capitanian (Middle permian) extinction and environmental changes in deep-water settings: Evidence from the lower yangtze region of South China. <i>Journal of the Geological Society</i>, <b>176</b> (3), pp. 588-608. <a href="http://dx.doi.org/10.1144/jgs2018-137"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>

2018

Aboussou A; Lamoureux-Var V; Wagner T; Pillot D; Kowalewski I; März C; Garcia B (2018) <i>Pyritic Sulphur and Organic Sulphur Quantification in Organic Rich Sediments Using Rock-Eval</i> Proceedings of the First EAGE/IFPEN Conference on Sulfur Risk Management in Exploration and Production. <a href="http://dx.doi.org/10.3997/2214-4609.201802758"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/140490/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Mertesdorf M; Wagner T; März C (2018) <i>Fe-S-C Dynamics: Re-examining the Role of Reactive Iron Fractions</i> Proceedings of the First EAGE/IFPEN Conference on Sulfur Risk Management in Exploration and Production. <a href="http://dx.doi.org/10.3997/2214-4609.201802774"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/140491/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic R; Gregoire L; Wickert A (2018) <i>Climate model data presented in ’Climatic effect of Antarctic meltwater overwhelmed by concurrent Northern hemispheric melt’</i> . <a href="http://dx.doi.org/10.5518/395"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Amano K; Little CTS; Campbell KA (2018) Lucinid bivalves from Miocene hydrocarbon seep sites of eastern North Island, New Zealand, with comments on Miocene New Zealand seep faunas. <i>Acta Palaeontologica Polonica</i>, <b>63</b> (2), pp. 371-382. <a href="http://dx.doi.org/10.4202/app.00461.2018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/128401/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Asael D; Rouxel O; Poulton SW; Lyons TW; Bekker A (2018) Molybdenum record from black shales indicates oscillating atmospheric oxygen levels in the early Paleoproterozoic. <i>American Journal of Science</i>, <b>318</b> (3), pp. 275-299. <a href="http://dx.doi.org/10.2475/03.2018.01"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/124177/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Barlow NLM; McClymont EL; Whitehouse PL; Stokes CR; Jamieson SSR; Woodroffe SA; Bentley MJ; Callard SL; Ó Cofaigh C; Evans DJA (2018) Lack of evidence for a substantial sea-level fluctuation within the Last Interglacial. <i>Nature Geoscience</i>, <b>11</b> (9), pp. 627-634. <a href="http://dx.doi.org/10.1038/s41561-018-0195-4"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132828/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Bond DPG; Blomeier DPG; Dustira AM; Wignall PB; Collins D; Goode T; Groen RD; Buggisch W; Grasby SE (2018) Sequence stratigraphy, basin morphology and sea-level history for the Permian Kapp Starostin Formation of Svalbard, Norway. <i>Geological Magazine</i>, <b>155</b> (5), pp. 1023-1039. <a href="http://dx.doi.org/10.1017/S0016756816001126"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/111377/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Boyd JL; Riding JB; Pound MJ; De Schepper S; Ivanovic RF; Haywood AM; Wood SEL (2018) The relationship between Neogene dinoflagellate cysts and global climate dynamics. <i>Earth-Science Reviews</i>, <b>177</b> , pp. 366-385. <a href="http://dx.doi.org/10.1016/j.earscirev.2017.11.018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/125411/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Brown JL; Hill DJ; Dolan AM; Carnaval AC; Haywood AM (2018) PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. <i>Scientific data</i>, <b>5</b> , ARTN 180254. <a href="http://dx.doi.org/10.1038/sdata.2018.254"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138067/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Burke KD; Williams JW; Chandler MA; Haywood AM; Lunt DJ; Otto-Bliesner BL (2018) Pliocene and Eocene provide best analogs for near-future climates. <i>Proceedings of the National Academy of Sciences</i>, <b>115</b> (52), pp. 13288-13293. <a href="http://dx.doi.org/10.1073/pnas.1809600115"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138629/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Cai P; Lin D; Peacock CL; Peng W; Huang Q (2018) EPS adsorption to goethite: Molecular level adsorption mechanisms using 2D correlation spectroscopy. <i>Chemical Geology</i>, <b>494</b> , pp. 127-135. <a href="http://dx.doi.org/10.1016/j.chemgeo.2018.07.028"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/134980/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Chen F; Xue W; Yan J; Wignall PB; Meng Q; Luo J; Feng Q (2018) Alatoconchids: Giant Permian bivalves from South China. <i>Earth-Science Reviews</i>, <b>179</b> , pp. 147-167. <a href="http://dx.doi.org/10.1016/j.earscirev.2018.01.012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/128431/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Cobain SL; Hodgson DM; Peakall J; Wignall PB; Cobain MRD (2018) A new macrofaunal limit in the deep biosphere revealed by extreme burrow depths in ancient sediments. <i>Scientific Reports</i>, <b>8</b> , 261. <a href="http://dx.doi.org/10.1038/s41598-017-18481-w"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/124933/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Cooper C; Swindles G; Savov IP; Schmidt A; Bacon K (2018) Evaluating the relationship between climate change and volcanism. <i>Earth-Science Reviews</i>, <b>177</b> , pp. 238-247. <a href="http://dx.doi.org/10.1016/j.earscirev.2017.11.009"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/124024/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dai X; Song H; Wignall PB; Jia E; Bai R; Wang F; Chen J; Tian L (2018) Rapid biotic rebound during the late Griesbachian indicates heterogeneous recovery patterns after the Permian-Triassic mass extinction. <i>GSA Bulletin</i>, <b>130</b> (11-12), pp. 2015-2030. <a href="http://dx.doi.org/10.1130/B31969.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138641/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dal Corso J; Gianolla P; Rigo M; Franceschi M; Roghi G; Mietto P; Manfrin S; Raucsik B; Budai T; Jenkyns HC (2018) Multiple negative carbon-isotope excursions during the Carnian Pluvial Episode (Late Triassic). <i>Earth-Science Reviews</i>, <b>185</b> , pp. 732-750. <a href="http://dx.doi.org/10.1016/j.earscirev.2018.07.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/136889/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dal Corso J; Ruffell A; Preto N (2018) The Carnian pluvial episode (Late Triassic): new insights into this important time of global environmental and biological change. <i>JOURNAL OF THE GEOLOGICAL SOCIETY</i>, <b>175</b> (6), pp. 986-988. <a href="http://dx.doi.org/10.1144/jgs2018-185"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dentith J (2018) The Meltdown: Abrupt climate change since the last Ice Age. <i>Weather</i>, <b>73</b> (2), pp. 67-67. <a href="http://dx.doi.org/10.1002/wea.3195"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/124055/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dolan AM; de Boer B; Bernales J; Hill DJ; Haywood AM (2018) High Climate Model Dependency of Pliocene Antarctic Ice-Sheet Predictions. <i>Nature Communications</i>, <b>9</b> , 2799. <a href="http://dx.doi.org/10.1038/s41467-018-05179-4"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131951/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Doyle KA; Poulton SW; Newton RJ; Podkovyrov VN; Bekker A (2018) Shallow water anoxia in the Mesoproterozoic ocean: Evidence from the Bashkir Meganticlinorium, Southern Urals. <i>Precambrian Research</i>, <b>317</b> , pp. 196-210. <a href="http://dx.doi.org/10.1016/j.precamres.2018.09.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/135443/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Driscoll DA; Dunhill AM; Stubbs TL; Benton MJ (2018) The Mosasaur Fossil Record Through the Lens of Fossil Completeness. <i>Palaeontology</i>, <b>62</b> (1), pp. 51-75. <a href="http://dx.doi.org/10.1111/pala.12381"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/130080/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Du H; Huang Q; Peacock CL; Tie B; Lei M; Liu X; Wei X (2018) Competitive binding of Cd, Ni and Cu on goethite organo-mineral composites made with soil bacteria. <i>Environmental Pollution</i>, <b>243</b> (Part A), pp. 444-452. <a href="http://dx.doi.org/10.1016/j.envpol.2018.08.087"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/136038/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Du H; Peacock CL; Chen W; Huang Q (2018) Binding of Cd by ferrihydrite organo-mineral composites: Implications for Cd mobility and fate in natural and contaminated environments. <i>Chemosphere</i>, <b>207</b> , pp. 404-412. <a href="http://dx.doi.org/10.1016/j.chemosphere.2018.05.092"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131721/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dunhill AM; Foster WJ; Azaele S; Sciberras J; Twitchett RJ (2018) Modelling determinants of extinction across two Mesozoic hyperthermal events. <i>Proceedings of the Royal Society B: Biological Sciences</i>, <b>285</b> (1889), 20180404. <a href="http://dx.doi.org/10.1098/rspb.2018.0404"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/137021/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dunhill AM; Foster WJ; Sciberras J; Twitchett RJ (2018) Impact of the Late Triassic mass extinction on functional diversity and composition of marine ecosystems. <i>Palaeontology</i>, <b>61</b> (1), pp. 133-148. <a href="http://dx.doi.org/10.1111/pala.12332"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/121265/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dunhill AM; Hannisdal B; Brocklehurst N; Benton MJ (2018) On formation-based sampling proxies and why they should not be used to correct the fossil record. <i>Palaeontology</i>, <b>61</b> (1), pp. 119-132. <a href="http://dx.doi.org/10.1111/pala.12331"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/121276/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dunne EM; Close RA; Button DJ; Brocklehurst N; Cashmore DD; Lloyd GT; Butler RJ (2018) Diversity change during the rise of tetrapods and the impact of the 'Carboniferous rainforest collapse'. <i>Proceedings of the Royal Society B: Biological Sciences</i>, <b>285</b> (1872), 20172730. <a href="http://dx.doi.org/10.1098/rspb.2017.2730"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/127983/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ebmeier SK; Andrews BJ; Araya MC; Arnold DWD; Biggs J; Cooper C; Cottrell E; Furtney M; Hickey J; Jay J (2018) Synthesis of global satellite observations of magmatic and volcanic deformation: implications for volcano monitoring & the lateral extent of magmatic domains. <i>Journal of Applied Volcanology</i>, <b>7</b> , 2. <a href="http://dx.doi.org/10.1186/s13617-018-0071-3"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/126124/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Faggetter LE; Wignall PB; Pruss SB; Sun Y; Raine RJ; Newton RJ; Widdowson M; Joachimski MM; Smith PM (2018) Sequence stratigraphy, chemostratigraphy and facies analysis of Cambrian Series 2 – Series 3 boundary strata in northwestern Scotland. <i>Geological Magazine</i>, <b>155</b> (4), pp. 865-877. <a href="http://dx.doi.org/10.1017/S0016756816000947"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/108378/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Fariña AO; Peacock CL; Fiol S; Antelo J; Carvin B (2018) A universal adsorption behaviour for Cu uptake by iron (hydr)oxide organo-mineral composites. <i>Chemical Geology</i>, <b>479</b> , pp. 22-35. <a href="http://dx.doi.org/10.1016/j.chemgeo.2017.12.022"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/126491/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Fordham BG; Aze T; Haller C; Zehady AK; Pearson PN; Ogg JG; Wade BS (2018) Future-proofing the Cenozoic macroperforate planktonic foraminifera phylogeny of Aze & others (2011). <i>PLoS ONE</i>, <b>13</b> (10), e0204625. <a href="http://dx.doi.org/10.1371/journal.pone.0204625"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138630/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gandy N; Gregoire LJ; Ely JC; Clark CD; Hodgson DM; Lee V; Bradwell T; Ivanovic RF (2018) Marine ice sheet instability and ice shelf buttressing of the Minch Ice Stream, northwest Scotland. <i>The Cryosphere</i>, <b>12</b> (11), pp. 3635-3651. <a href="http://dx.doi.org/10.5194/tc-12-3635-2018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138482/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Georgieva MN; Little CTS; Bailey RJ; Ball AD; Glover AG (2018) Microbial-tubeworm associations in a 440 million year old hydrothermal vent community. <i>Proceedings of the Royal Society B: Biological Sciences</i>, <b>285</b> (1891), 20182004. <a href="http://dx.doi.org/10.1098/rspb.2018.2004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138779/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gill FL; Hummel J; Sharifi AR; Lee AP; Lomax BH (2018) Diets of giants: the nutritional value of sauropod diet during the Mesozoic. <i>Palaeontology</i>, <b>61</b> (5), pp. 647-658. <a href="http://dx.doi.org/10.1111/pala.12385"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/134279/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gooddy DC; Bowes MJ; Lapworth DJ; Lamb AL; Williams PJ; Newton RJ; Davies CL; Surridge BWJ (2018) Evaluating the stable isotopic composition of phosphate oxygen as a tracer of phosphorus from waste water treatment works. <i>Applied Geochemistry</i>, <b>95</b> , pp. 139-146. <a href="http://dx.doi.org/10.1016/j.apgeochem.2018.05.025"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132252/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gregoire LJ; Ivanovic RF; Maycock AC; Valdes PJ; Stevenson S (2018) Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate. <i>Climate Dynamics</i>, <b>51</b> (9-10), pp. 3797-3813. <a href="http://dx.doi.org/10.1007/s00382-018-4111-9"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/125427/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Guilbaud R; Slater BJ; Poulton SW; Harvey THP; Brocks JJ; Nettersheim BJ; Butterfield NJ (2018) Oxygen minimum zones in the early Cambrian ocean. <i>Geochemical Perspectives Letters</i>, <b>6</b> , pp. 33-38. <a href="http://dx.doi.org/10.7185/geochemlet.1806"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/127305/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hall JLO; Newton RJ; Witts JD; Francis JE; Hunter SJ; Jamieson RA; Harper EM; Crame JA; Haywood AM (2018) High benthic methane flux in low sulfate oceans: Evidence from carbon isotopes in Late Cretaceous Antarctic bivalves. <i>Earth and Planetary Science Letters</i>, <b>497</b> , pp. 113-122. <a href="http://dx.doi.org/10.1016/j.epsl.2018.06.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132417/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hawkings JR; Hatton JE; Hendry KR; De Souza GF; Wadham JL; Ivanovic R; Kohler TJ; Stibal M; Beaton A; Lamarche-Gagnon G (2018) The silicon cycle impacted by past ice sheets. <i>Nature Communications</i>, <b>9</b> (1), ARTN 3210. <a href="http://dx.doi.org/10.1038/s41467-018-05689-1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131955/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic RF; Gregoire LJ; Burke A; Wickert AD; Valdes PJ; Ng HC; Robinson LF; McManus JF; Mitrovica JX; Lee L (2018) Acceleration of Northern Ice Sheet Melt Induces AMOC Slowdown and Northern Cooling in Simulations of the Early Last Deglaciation. <i>Paleoceanography and Paleoclimatology</i>, <b>33</b> (7), pp. 807-824. <a href="http://dx.doi.org/10.1029/2017PA003308"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132788/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic RF; Gregoire LJ; Wickert AD; Burke A (2018) Climatic Effect of Antarctic Meltwater Overwhelmed by Concurrent Northern Hemispheric Melt. <i>Geophysical Research Letters</i>, <b>45</b> (11), pp. 5681-5689. <a href="http://dx.doi.org/10.1029/2018GL077623"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131663/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Johnson KL; Banwart SA; Peacock CL; Blake L (2018) Heat and soil vie for waste to cut emissions. <i>Nature</i>, <b>563</b> (7733), pp. 626-626. <a href="http://dx.doi.org/10.1038/d41586-018-07546-z"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/139777/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Kageyama M; Braconnot P; Harrison SP; Haywood AM; Jungclaus J; Otto-Bliesner BL; Peterschmitt J-Y; Abe-Ouchi A; Albani S; Bartlein PJ (2018) The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan. <i>Geoscientific Model Development</i>, <b>11</b> , pp. 1033-1057. <a href="http://dx.doi.org/10.5194/gmd-11-1033-2018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/103743/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Krause AJ; Mills BJW; Zhang S; Planavsky NJ; Lenton TM; Poulton SW (2018) Stepwise oxygenation of the Paleozoic atmosphere. <i>Nature Communications</i>, <b>9</b> (1), e4081. <a href="http://dx.doi.org/10.1038/s41467-018-06383-y"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/135069/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Lai X; Jiang H; Wignall PB (2018) A review of the Late Permian – Early Triassic conodont record and its significance for the end-Permian mass extinction. <i>Revue de Micropaleontologie</i>, <b>61</b> (3-4), pp. 155-164. <a href="http://dx.doi.org/10.1016/j.revmic.2018.10.002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138642/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Lenton TM; Daines SJ; Mills BJW (2018) COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. <i>Earth-Science Reviews</i>, <b>178</b> , pp. 1-28. <a href="http://dx.doi.org/10.1016/j.earscirev.2017.12.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/125894/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Li M; Song H; Algeo TJ; Wignall PB; Dai X; Woods AD (2018) A dolomitization event at the oceanic chemocline during the Permian-Triassic transition. <i>Geology</i>, <b>46</b> (12), pp. 1043-1046. <a href="http://dx.doi.org/10.1130/G45479.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/140157/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Lin D; Cai P; Peacock CL; Wu Y; Gao C; Peng W; Huang Q; Liang W (2018) Towards a better understanding of the aggregation mechanisms of iron (hydr)oxide nanoparticles interacting with extracellular polymeric substances: Role of pH and electrolyte solution. <i>Science of The Total Environment</i>, <b>645</b> , pp. 372-379. <a href="http://dx.doi.org/10.1016/j.scitotenv.2018.07.136"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/133869/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Lloyd GT (2018) Journeys through discrete-character morphospace: synthesizing phylogeny, tempo, and disparity. <i>Palaeontology</i>, <b>61</b> (5), pp. 637-645. <a href="http://dx.doi.org/10.1111/pala.12380"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/136318/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Magnall JM; Gleeson SA; Poulton SW; Gordon GW; Paradis S (2018) Links between seawater paleoredox and the formation of sediment-hosted massive sulphide (SHMS) deposits - Fe speciation and Mo isotope constraints from Late Devonian mudstones. <i>CHEMICAL GEOLOGY</i>, <b>490</b> , pp. 45-60. <a href="http://dx.doi.org/10.1016/j.chemgeo.2018.05.005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131019/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
McCann CM; Peacock CL; Hudson-Edwards K; Shrimpton T; Gray ND; Johnson KL (2018) In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil. <i>Journal of Hazardous Materials</i>, <b>342</b> , pp. 724-731. <a href="http://dx.doi.org/10.1016/j.jhazmat.2017.08.066"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/120766/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Mills BJW; Batterman SA; Field KJ (2018) Nutrient acquisition by symbiotic fungi governs Palaeozoic climate transition. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i>, <b>373</b> (1739), 20160503. <a href="http://dx.doi.org/10.1098/rstb.2016.0503"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/119878/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Morris PJ; Swindles GT; Valdes PJ; Ivanovic RF; Gregoire LJ; Smith MW; Tarasov L; Haywood AM; Bacon KL (2018) Global peatland initiation driven by regionally asynchronous warming. <i>Proceedings of the National Academy of Sciences</i>, <b>115</b> (19), pp. 4851-4856. <a href="http://dx.doi.org/10.1073/pnas.1717838115"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/129090/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
März C; Riedinger N; Sena C; Kasten S (2018) Phosphorus dynamics around the sulphate-methane transition in continental margin sediments: Authigenic apatite and Fe(II) phosphates. <i>Marine Geology</i>, <b>404</b> , pp. 84-96. <a href="http://dx.doi.org/10.1016/j.margeo.2018.07.010"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/133884/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Müller J; Romero O; Cowan EA; McClymont EL; Forwick M; Asahi H; März C; Moy CM; Suto I; Mix A (2018) Cordilleran ice-sheet growth fueled primary productivity in the Gulf of Alaska, northeast Pacific Ocean. <i>Geology</i>, <b>46</b> (4), pp. 307-310. <a href="http://dx.doi.org/10.1130/G39904.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/126648/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Newton RJ; Little CTS; Pape E; Gill F; Rodrigues CF; Cunha MR (2018) Does carbonate-associated sulphate record nutrition in lucinid and thyasirid bivalve shells from modern hydrocarbon seeps?. <i>Journal of Molluscan Studies</i>, <b>84</b> (2), pp. 170-174. <a href="http://dx.doi.org/10.1093/mollus/eyy004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/126733/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ng HC; Robinson LF; McManus JF; Mohamed KJ; Jacobel AW; Ivanovic RF; Gregoire LJ; Chen T (2018) Coherent deglacial changes in western Atlantic Ocean circulation. <i>Nature Communications</i>, <b>9</b> , 2947. <a href="http://dx.doi.org/10.1038/s41467-018-05312-3"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132789/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ossa Ossa F; Hofmann A; Wille M; Spangenberg JE; Bekker A; Poulton SW; Eickmann B; Schoenberg R (2018) Aerobic iron and manganese cycling in a redox-stratified Mesoarchean epicontinental sea. <i>Earth and Planetary Science Letters</i>, <b>500</b> , pp. 28-40. <a href="http://dx.doi.org/10.1016/j.epsl.2018.07.044"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/134011/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Panitz S; Salzmann U; Risebrobakken B; De Schepper S; Pound MJ; Haywood AM; Dolan AM; Lunt DJ (2018) Orbital, tectonic and oceanographic controls on Pliocene climate and atmospheric circulation in Arctic Norway. <i>Global and Planetary Change</i>, <b>161</b> , pp. 183-193. <a href="http://dx.doi.org/10.1016/j.gloplacha.2017.12.022"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/125874/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Pape E; Gill FL; Newton RJ; Little CTS; Abbott GD (2018) Methodological comparison for the isolation of shell-bound organic matter for carbon, nitrogen and sulfur stable isotope analysis. <i>Chemical Geology</i>, <b>493</b> , pp. 87-99. <a href="http://dx.doi.org/10.1016/j.chemgeo.2018.05.028"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/127637/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Prescott CL; Dolan AM; Haywood AM; Hunter SJ; Tindall JC (2018) Regional climate and vegetation response to orbital forcing within the mid-Pliocene Warm Period: A study using HadCM3. <i>Global and Planetary Change</i>, <b>161</b> , pp. 231-243. <a href="http://dx.doi.org/10.1016/j.gloplacha.2017.12.015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/125410/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Pritchard ME; Biggs J; Wauthier C; Sansosti E; Arnold DWD; Delgado F; Ebmeier SK; Henderson ST; Stephens K; Cooper C (2018) Towards coordinated regional multi-satellite InSAR volcano observations: Results from the Latin America pilot project. <i>Journal of Applied Volcanology</i>, <b>7</b> (5). <a href="http://dx.doi.org/10.1186/s13617-018-0074-0"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131540/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Racki G; Rakocinski M; Marynowski L; Wignall PB (2018) Mercury enrichments and the Frasnian-Famennian biotic crisis: A volcanic trigger proved?. <i>Geology</i>, <b>46</b> (6), pp. 543-546. <a href="http://dx.doi.org/10.1130/G40233.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132594/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Raiswell R; Hardisty DS; Lyons TW; Canfield DE; Owens JD; Planavsky NJ; Poulton SW; Reinhard CT (2018) The iron paleoredox proxies: A guide to the pitfalls, problems and proper practice. <i>American Journal of Science</i>, <b>318</b> (5), pp. 491-526. <a href="http://dx.doi.org/10.2475/05.2018.03"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/126859/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Rees-Owen RL; Gill F; Newton RJ; Ivanovic RF; Francis JE; Riding JB; Vane CH; Lopes dos Santos RA (2018) The last forests on Antarctica: Reconstructing flora and temperature from the Neogene Sirius Group, Transantarctic Mountains. <i>Organic Geochemistry</i>, <b>118</b> , pp. 4-14. <a href="http://dx.doi.org/10.1016/j.orggeochem.2018.01.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/126994/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Roberts J; Turchyn AV; Wignall PB; Newton RJ; Vane CH (2018) Disentangling Diagenesis From the Rock Record: An Example From the Permo‐Triassic Wordie Creek Formation, East Greenland. <i>Geochemistry, Geophysics, Geosystems</i>, <b>19</b> (1), pp. 99-113. <a href="http://dx.doi.org/10.1002/2017GC007259"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/127014/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Rushby AJ; Johnson M; Mills BJW; Watson AJ; Claire MW (2018) Long Term Planetary Habitability and the Carbonate-Silicate Cycle. <i>Astrobiology</i>, <b>18</b> (5), pp. 469-480. <a href="http://dx.doi.org/10.1089/ast.2017.1693"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/125975/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Schiebel R; Smart SM; Jentzen A; Jonkers L; Morard R; Meilland J; Michel E; Coxall HK; Hull PM; de Garidel-Thoron T (2018) Advances in planktonic foraminifer research: New perspectives for paleoceanography. <i>Revue de Micropaléontologie</i>, <b>61</b> (3-4), pp. 113-138. <a href="http://dx.doi.org/10.1016/j.revmic.2018.10.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/138631/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Seyfullah LJ; Beimforde C; Dal Corso J; Perrichot V; Rikkinen J; Schmidt AR (2018) Production and preservation of resins – past and present. <i>Biological Reviews</i>, <b>93</b> (3), pp. 1684-1714. <a href="http://dx.doi.org/10.1111/brv.12414"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131115/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Sheen AI; Kendall B; Reinhard CT; Creaser RA; Lyons TW; Bekker A; Poulton SW; Anbar AD (2018) A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia. <i>Geochimica et Cosmochimica Acta</i>, <b>227</b> , pp. 75-95. <a href="http://dx.doi.org/10.1016/j.gca.2018.01.036"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/126858/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Shennan I; Brader MD; Barlow NLM; Davies FP; Longley C; Tunstall N (2018) Late Holocene paleoseismology of Shuyak Island, Alaska. <i>Quaternary Science Reviews</i>, <b>201</b> , pp. 380-395. <a href="http://dx.doi.org/10.1016/j.quascirev.2018.10.028"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/137583/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Silva-Tamayo JC; Lau KV; Jost AB; Payne JL; Wignall PB; Newton RJ; Eisenhauer A; Depaolo DJ; Brown S; Maher K (2018) Global perturbation of the marine calcium cycle during the Permian-Triassic transition. <i>Geological Society of America Bulletin</i>, <b>130</b> (7-8), pp. 1323-1338. <a href="http://dx.doi.org/10.1130/B31818.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/129101/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Smith YM; Hill DJ; Dolan AM; Haywood AM; Dowsett HJ; Risebrobakken B (2018) Icebergs in the Nordic Seas Throughout the Late Pliocene. <i>Paleoceanography and Paleoclimatology</i>, <b>33</b> (3), pp. 318-335. <a href="http://dx.doi.org/10.1002/2017PA003240"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/128223/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Song H; Wignall P; Dunhill A (2018) Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. <i>Science Advances</i>, <b>4</b> (10), eaat5091. <a href="http://dx.doi.org/10.1126/sciadv.aat5091"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/137189/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Swindles G; Watson E; Savov IP; Lawson I; Schmidt A; Hooper A; Cooper C; Connor C; Gloor E; Carrivick J (2018) Climatic control on Icelandic volcanic activity during the mid-Holocene. <i>Geology</i>, <b>46</b> (1), pp. 47-50. <a href="http://dx.doi.org/10.1130/G39633.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/123090/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Swindles GT; Galloway JM; Macumber AL; Croudace IW; Emery AR; Woulds C; Bateman MD; Parry L; Jones JM; Selby K (2018) Sedimentary records of coastal storm surges: Evidence of the 1953 North Sea event. <i>Marine Geology</i>, <b>403</b> , pp. 262-270. <a href="http://dx.doi.org/10.1016/j.margeo.2018.06.013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132932/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Swindles GT; Morris PJ; Whitney B; Galloway JM; Gałka M; Gallego-Sala A; Macumber AL; Mullan D; Smith MW; Amesbury MJ (2018) Ecosystem state shifts during long-term development of an Amazonian peatland. <i>Global Change Biology</i>, <b>24</b> (2), pp. 738-757. <a href="http://dx.doi.org/10.1111/gcb.13950"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/123120/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Tarver JE; Taylor RS; Puttick MN; Lloyd GT; Pett W; Fromm B; Schirrmeister BE; Pisani D; Peterson KJ; Donoghue PCJ (2018) Well-Annotated microRNAomes Do Not Evidence Pervasive miRNA Loss. <i>Genome Biology and Evolution</i>, <b>10</b> (6), pp. 1457-1470. <a href="http://dx.doi.org/10.1093/gbe/evy096"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/135591/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
van de Velde S; Mills BJW; Meysman FJR; Lenton TM; Poulton SW (2018) Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing. <i>Nature Communications</i>, <b>9</b> , 2554. <a href="http://dx.doi.org/10.1038/s41467-018-04973-4"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131815/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
van den Heuvel DB; Gunnlaugsson E; Gunnarsson I; Stawski TM; Peacock CL; Benning LG (2018) Understanding amorphous silica scaling under well-constrained conditions inside geothermal pipelines. <i>Geothermics</i>, <b>76</b> , pp. 231-241. <a href="http://dx.doi.org/10.1016/j.geothermics.2018.07.006"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/135296/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
van den Heuvel DB; Stawski TM; Tobler DJ; Wirth R; Peacock CL; Benning LG (2018) Formation of Silica-Lysozyme Composites Through Co-Precipitation and Adsorption. <i>Frontiers in Materials</i>, <b>5</b> , 19. <a href="http://dx.doi.org/10.3389/fmats.2018.00019"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/128982/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wang D; Ling H-F; Struck U; Zhu X-K; Zhu M; He T; Yang B; Gamper A; Shields GA (2018) Publisher Correction: Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition. <i>Nature Communications</i>, <b>9</b> , 3395. <a href="http://dx.doi.org/10.1038/s41467-018-05540-7"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/137637/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wang D; Ling H-F; Struck U; Zhu X-K; Zhu M; He T; Yang B; Gamper A; Shields GA (2018) Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition. <i>Nature Communications</i>, <b>9</b> (1), 2575. <a href="http://dx.doi.org/10.1038/s41467-018-04980-5"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/134348/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wang X; Cawood PA; Zhao H; Zhao L; Grasby SE; Chen Z-Q; Wignall PB; Lv Z; Han C (2018) Mercury anomalies across the end Permian mass extinction in South China from shallow and deep water depositional environments. <i>Earth and Planetary Science Letters</i>, <b>496</b> , pp. 159-167. <a href="http://dx.doi.org/10.1016/j.epsl.2018.05.044"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131833/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Witts JD; Newton RJ; Mills BJW; Wignall PB; Bottrell SH; Hall JLO; Francis JE; Crame JA (2018) The impact of the Cretaceous–Paleogene (K–Pg) mass extinction event on the global sulfur cycle: Evidence from Seymour Island, Antarctica. <i>Geochimica et Cosmochimica Acta</i>, <b>230</b> , pp. 17-45. <a href="http://dx.doi.org/10.1016/j.gca.2018.02.037"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/128418/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wood R; Bowyer F; Penny A; Poulton SW (2018) Did anoxia terminate Ediacaran benthic communities? Evidence from early diagenesis. <i>Precambrian Research</i>, <b>313</b> , pp. 134-147. <a href="http://dx.doi.org/10.1016/j.precamres.2018.05.011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/131004/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Woodward GL; Peacock CL; Otero-Fariña A; Thompson OR; Brown AP; Burke IT (2018) A universal uptake mechanism for cobalt(II) on soil constituents: ferrihydrite, kaolinite, humic acid, and organo-mineral composites. <i>Geochimica et Cosmochimica Acta</i>, <b>238</b> , pp. 270-291. <a href="http://dx.doi.org/10.1016/j.gca.2018.06.035"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132775/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Zhang B; Yao S; Wignall PB; Hu W; Ding H; Liu B; Ren Y (2018) Widespread coastal upwelling along the Eastern Paleo-Tethys Margin (South China) during the Middle Permian (Guadalupian): Implications for organic matter accumulation. <i>Marine and Petroleum Geology</i>, <b>97</b> , pp. 113-126. <a href="http://dx.doi.org/10.1016/j.marpetgeo.2018.06.025"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/133747/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Zhang K; Zhu X; Wood RA; Shi Y; Gao Z; Poulton SW (2018) Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. <i>Nature Geoscience</i>, <b>11</b> (5), pp. 345-350. <a href="http://dx.doi.org/10.1038/s41561-018-0111-y"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/129010/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Zhang L; Wang C; Wignall PB; Kluge T; Wan X; Wang Q; Gao Y (2018) Deccan volcanism caused coupled pCO₂ and terrestrial temperature rises, and pre-impact extinctions in northern China. <i>Geology</i>, <b>46</b> (3), pp. 271-274. <a href="http://dx.doi.org/10.1130/G39992.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/128432/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Zhang S; Planavsky NJ; Krause AJ; Bolton EW; Mills BJW (2018) Model based Paleozoic atmospheric oxygen estimates: a revisit to GEOCARBSULF. <i>American Journal of Science</i>, <b>318</b> (5), pp. 557-589. <a href="http://dx.doi.org/10.2475/05.2018.05"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/134001/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Zhang Z; Sun Y; Lai X; Wignall PB (2018) Carnian (Late Triassic) conodont faunas from south-western China and their implications. <i>Papers in Palaeontology</i>, <b>4</b> (4), pp. 513-535. <a href="http://dx.doi.org/10.1002/spp2.1116"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132596/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Zhang ZT; Sun YD; Wignall PB; Fu JL; Li HX; Wang MY; Lai XL (2018) Conodont size reduction and diversity losses during the Carnian Humid Episode in SW China. <i>Journal of the Geological Society</i>, <b>175</b> (6), pp. 1027-1031. <a href="http://dx.doi.org/10.1144/jgs2018-002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132023/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Zou C; Qiu Z; Poulton SW; Dong D; Wang H; Chen D; Lu B; Shi Z; Tao H (2018) Ocean euxinia and climate change "double whammy" drove the Late Ordovician mass extinction. <i>Geology</i>, <b>46</b> (6), pp. 535-538. <a href="http://dx.doi.org/10.1130/G40121.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/129520/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic R; Gregoire L; Wickert A; Mitrovica J (2018) <i>Climate model data presented in ’Acceleration of northern ice sheet melt induces AMOC slowdown and northern cooling in simulations of the early last deglaciation’</i> . <a href="http://dx.doi.org/10.5518/400"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>

2017

Peacock CL; Lalonde SV; Konhauser KO (2017) Iron minerals as archives of Earth's redox and biogeochemical evolution. <i>In:</i> Ahmed IAM; Hudson-Edwards KA eds. <i>Redox-reactive Minerals: Properties, Reactions and Applications in Clean Technologies</i>, EMU Notes in Mineralogy, 17, Mineralogical Society, pp. 121-172. <a href="http://dx.doi.org/10.1180/EMU-notes.17.14"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/123877/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gregoire L; Ivanovic R (2017) <i>Climate model data presented in ’Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate’</i> . <a href="http://dx.doi.org/10.5518/305"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Swindles G; Watson E; Savov I; Cooper C; Lawson I; Schmidt A; Carrivick J (2017) <i>Holocene volcanic ash database for northern Europe</i> . <a href="http://dx.doi.org/10.13140/RG.2.2.11395.60966"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Barlow NLM; Long AJ; Gehrels WR; Saher MH; Scaife RG; Davies HJ; Penkman KEH; Bridgland DR; Sparkes A; Smart CW (2017) Relative sea-level variability during the late Middle Pleistocene: new evidence from eastern England. <i>Quaternary Science Reviews</i>, <b>173</b> , pp. 20-39. <a href="http://dx.doi.org/10.1016/j.quascirev.2017.08.017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/120128/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Beghin J; Guilbaud R; Poulton SW; Gueneli N; Brocks JJ; Storme J-Y; Blanpied C; Javaux EJ (2017) A palaeoecological model for the late Mesoproterozoic – early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa. <i>Precambrian Research</i>, <b>299</b> , pp. 1-14. <a href="http://dx.doi.org/10.1016/j.precamres.2017.07.016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/119298/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Beghin J; Storme J-Y; Blanpied C; Gueneli N; Brocks JJ; Poulton SW; Javaux EJ (2017) Microfossils from the late Mesoproterozoic – early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa. <i>Precambrian Research</i>, <b>291</b> , pp. 63-82. <a href="http://dx.doi.org/10.1016/j.precamres.2017.01.009"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/110731/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Bowyer F; Wood RA; Poulton SW (2017) Controls on the evolution of Ediacaran metazoan ecosystems: A redox perspective. <i>Geobiology</i>, <b>15</b> (4), pp. 516-551. <a href="http://dx.doi.org/10.1111/gbi.12232"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/111915/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Brader MD; Lloyd JM; Barlow NLM; Norðdahl H; Bentley MJ; Newton AJ (2017) Postglacial relative sea-level changes in northwest Iceland: evidence from isolation basins, coastal lowland sediments and raised shorelines. <i>Quaternary Science Reviews</i>, <b>169</b> , pp. 114-130. <a href="http://dx.doi.org/10.1016/j.quascirev.2017.05.022"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/117732/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Brienen RJW; Gloor E; Clerici S; Newton R; Arppe L; Boom A; Bottrell S; Callaghan M; Heaton T; Helama S (2017) Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes. <i>Nature Communications</i>, <b>8</b> (1), 288. <a href="http://dx.doi.org/10.1038/s41467-017-00225-z"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/121761/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Buckman J; Mahoney C; März C; Wagner T; Blanco V (2017) Identifying biogenic silica: Mudrock micro-fabric explored through charge contrast imaging. <i>American Mineralogist</i>, <b>102</b> (4), pp. 833-844. <a href="http://dx.doi.org/10.2138/am-2017-5797"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/108775/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Button DJ; Lloyd GT; Ezcurra MD; Butler RJ (2017) Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea. <i>Nature Communications</i>, <b>8</b> , 733. <a href="http://dx.doi.org/10.1038/s41467-017-00827-7"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/122592/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Daines SJ; Mills BJW; Lenton TM (2017) Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. <i>Nature Communications</i>, <b>8</b> , 14379. <a href="http://dx.doi.org/10.1038/ncomms14379"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/112190/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dal Corso J; Schmidt AR; Seyfullah LJ; Preto N; Ragazzi E; Jenkyns HC; Delclòs X; Néraudeau D; Roghi G (2017) Evaluating the use of amber in palaeoatmospheric reconstructions: The carbon-isotope variability of modern and Cretaceous conifer resins. <i>Geochimica et Cosmochimica Acta</i>, <b>199</b> , pp. 351-369. <a href="http://dx.doi.org/10.1016/j.gca.2016.11.025"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
De Boer B; Haywood AM; Dolan AM; Hunter SJ; Prescott CL (2017) The transient response of ice volume to orbital forcing during the warm Late Pliocene. <i>Geophysical Research Letters</i>, <b>44</b> (20), pp. 10486-10494. <a href="http://dx.doi.org/10.1002/2017GL073535"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/122243/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
De Vleeschouwer D; Dunlea AG; Auer G; Anderson CH; Brumsack H; De Loach A; Gurnis MC; Huh Y; Ishiwa T; Jang K (2017) Quantifying K, U and Th contents of marine sediments using shipboard natural gamma radiation spectra measured on DV JOIDES Resolution. <i>Geochemistry, Geophysics, Geosystems</i>, <b>18</b> (3), pp. 1053-1064. <a href="http://dx.doi.org/10.1002/2016GC006715"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/112606/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dodd MS; Papineau D; Grenne T; Slack JF; Rittner M; Pirajno F; O'Neil J; Little CTS (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. <i>Nature</i>, <b>543</b> (7643), pp. 60-64. <a href="http://dx.doi.org/10.1038/nature21377"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/112179/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Faggetter LE; Wignall PB; Pruss SB; Newton RJ; Sun YD; Crowley SF (2017) Trilobite extinctions, facies changes and the ROECE carbon isotope excursion at the Cambrian Series 2 - 3 boundary, Great Basin, western USA. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>478</b> , pp. 53-66. <a href="http://dx.doi.org/10.1016/j.palaeo.2017.04.009"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/115157/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Glaze LS; Self S; Schmidt A; Hunter SJ (2017) Assessing eruption column height in ancient flood basalt eruptions. <i>Earth and Planetary Science Letters</i>, <b>457</b> , pp. 263-270. <a href="http://dx.doi.org/10.1016/j.epsl.2014.07.043"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/109782/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
He T; Zhou Y; Vermeesch P; Rittner M; Miao L; Zhu M; Carter A; Pogge von Strandmann PAE; Shields GA (2017) Measuring the ‘Great Unconformity’ on the North China Craton using new detrital zircon age data. <i>Geological Society Special Publications</i>, <b>448</b> , pp. 145-159. <a href="http://dx.doi.org/10.1144/SP448.14"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/134351/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Heublein C; Südekum K-H; Gill FL; Dohme-Meier F; Schori F (2017) Using plant wax markers to estimate the diet composition of grazing Holstein dairy cows. <i>Journal of Dairy Science</i>, <b>100</b> (2), pp. 1019-1036. <a href="http://dx.doi.org/10.3168/jds.2016-11494"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/109810/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hill DJ; Bolton KP; Haywood AM (2017) Modelled ocean changes at the Plio-Pleistocene transition driven by Antarctic ice advance. <i>Nature Communications</i>, <b>8</b> , 14376. <a href="http://dx.doi.org/10.1038/ncomms14376"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/110157/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Huang Y; Chen Z-Q; Wignall PB; Zhao L (2017) Latest Permian to Middle Triassic redox condition variations in ramp settings, South China: Pyrite framboid evidence. <i>Geological Society of America Bulletin</i>, <b>129</b> (1-2), pp. 229-243. <a href="http://dx.doi.org/10.1130/B31458.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/112358/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic RF; Gregoire LJ; Wickert AD; Valdes PJ; Burke A (2017) Collapse of the North American ice saddle 14,500 years ago caused widespread cooling and reduced ocean overturning circulation. <i>Geophysical Research Letters</i>, <b>44</b> (1), pp. 383-392. <a href="http://dx.doi.org/10.1002/2016GL071849"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/109834/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Izon G; Zerkle AL; Williford KH; Farquhar J; Poulton SW; Claire MW (2017) Biological Regulation of Atmospheric Chemistry En Route to Planetary Oxygenation. <i>Proceedings of the National Academy of Sciences</i>, <b>114</b> (13), pp. E2571-E2579. <a href="http://dx.doi.org/10.1073/pnas.1618798114"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/112507/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Jiang H; Wignall PB; Chen Z-Q; Xie S; Lai X; Song H; Wang L (2017) Comment on “Quantitative biochronology of the Permian–Triassic boundary in South China based on conodont unitary associations” by Brosse et al. (2016). <i>Earth-Science Reviews</i>, <b>164</b> , pp. 257-258. <a href="http://dx.doi.org/10.1016/j.earscirev.2016.07.008"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/107675/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Johnson BW; Poulton SW; Goldblatt C (2017) Marine oxygen production and open water supported an active nitrogen cycle during the Marinoan Snowball Earth. <i>Nature Communications</i>, <b>8</b> (1). <a href="http://dx.doi.org/10.1038/s41467-017-01453-z"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/121775/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Kageyama M; Albani S; Braconnot P; Harrison SP; Hopcroft PO; Ivanovic RF; Lambert F; Marti O; Peltier R; Peterschmitt J-Y (2017) The PMIP4 contribution to CMIP6 – Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. <i>Geoscientific Model Development</i>, <b>10</b> (11), pp. 4035-4055. <a href="http://dx.doi.org/10.5194/gmd-10-4035-2017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/112796/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Kaim A; Hryniewicz K; Little CTS; Nakrem HA (2017) Gastropods from the Late Jurassic–Early Cretaceous seep deposits in Spitsbergen, Svalbard. <i>Zootaxa</i>, <b>4329</b> (4), pp. 351-374. <a href="http://dx.doi.org/10.11646/zootaxa.4329.4.3"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/119520/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Kasina M; Bock S; Wuerdemann H; Pudlo D; Picard A; Lichtschlag A; Maerz CE; Wagenknecht L; Wehrmann LM; Vogt C (2017) Mineralogical and geochemical analysis of Fe-phases in drill-cores from the Triassic Stuttgart Formation at Ketzin CO₂ storage site before CO₂ arrival. <i>Environmental Earth Sciences</i>, <b>76</b> (4), 161. <a href="http://dx.doi.org/10.1007/s12665-017-6460-9"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/111838/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Littlewood JL; Shaw S; Peacock CL; Bots P; Trivedi D; Burke IT (2017) Mechanism of enhanced strontium uptake into calcite via an amorphous calcium carbonate (ACC) crystallisation pathway. <i>Crystal Growth and Design</i>, <b>17</b> (3), pp. 1214-1223. <a href="http://dx.doi.org/10.1021/acs.cgd.6b01599"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/111108/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Marzoli A; Davies JHFL; Youbi N; Merle R; Dal Corso J; Dunkley DJ; Fioretti AM; Bellieni G; Medina F; Wotzlaw J-F (2017) Proterozoic to Mesozoic evolution of North-West Africa and Peri-Gondwana microplates: Detrital zircon ages from Morocco and Canada. <i>Lithos</i>, <b>278-281</b> , pp. 229-239. <a href="http://dx.doi.org/10.1016/j.lithos.2017.01.016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Matero ISO; Gregoire LJ; Ivanovic RF; Tindall JC; Haywood AM (2017) The 8.2 ka cooling event caused by Laurentide ice saddle collapse. <i>Earth and Planetary Science Letters</i>, <b>473</b> , pp. 205-214. <a href="http://dx.doi.org/10.1016/j.epsl.2017.06.011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/117290/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Matthews A; Azrieli-Tal I; Benkovitz A; Bar-Matthews M; Vance D; Poulton SW; Teutsch N; Almogi-Labin A; Archer C (2017) Anoxic development of sapropel S1 in the Nile Fan inferred from redox sensitive proxies, Fe speciation, Fe and Mo isotopes. <i>CHEMICAL GEOLOGY</i>, <b>475</b> , pp. 24-39. <a href="http://dx.doi.org/10.1016/j.chemgeo.2017.10.028"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/123229/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Mills BJW; Scotese CR; Walding NG; Shields GA; Lenton TM (2017) Elevated CO2 degassing rates prevented the return of Snowball Earth during the Phanerozoic. <i>Nature Communications</i>, <b>8</b> , 1110. <a href="http://dx.doi.org/10.1038/s41467-017-01456-w"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/121800/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Oonk PBH; Tsikos H; Mason PRD; Henkel S; Staubwasser M; Fryer L; Poulton SW; Williams HM (2017) Fraction-specific controls on the trace element distribution in iron formations: Implications for trace metal stable isotope proxies. <i>CHEMICAL GEOLOGY</i>, <b>474</b> , pp. 17-32. <a href="http://dx.doi.org/10.1016/j.chemgeo.2017.10.018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/122801/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Otto-Bliesner BL; Braconnot P; Harrison SP; Lunt DJ; Abe-Ouchi A; Albani S; Bartlein PJ; Capron E; Carlson AE; Dutton A (2017) The PMIP4 contribution to CMIP6 - Part 2: Two Interglacials, Scientific Objective and Experimental Design for Holocene and Last Interglacial Simulations. <i>Geoscientific Model Development</i>, <b>10</b> , pp. 3979-4003. <a href="http://dx.doi.org/10.5194/gmd-10-3979-2017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/112798/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Poulton SW (2017) Biogeochemistry: Early phosphorus redigested. <i>Nature Geoscience</i>, <b>10</b> (2), pp. 75-76. <a href="http://dx.doi.org/10.1038/ngeo2884"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/112223/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Preto N; Breda A; Dal Corso J; Franceschi M; Rocca F; Spada C; Roghi G (2017) The Loppio Oolitic Limestone (Early Jurassic, Southern Alps): A prograding oolitic body with high original porosity originated by a carbonate platform crisis and recovery. <i>Marine and Petroleum Geology</i>, <b>79</b> , pp. 394-411. <a href="http://dx.doi.org/10.1016/j.marpetgeo.2016.10.027"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Rabizadeh T; Stawski TM; Morgan DJ; Peacock CL; Benning LG (2017) The Effects of Inorganic Additives on the Nucleation and Growth Kinetics of Calcium Sulfate Dihydrate Crystals. <i>Crystal Growth & Design</i>, <b>17</b> (2), pp. 582-589. <a href="http://dx.doi.org/10.1021/acs.cgd.6b01441"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/113002/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Santos MGM; Mountney NP; Peakall J; Thomas RE; Wignall PB; Hodgson DM (2017) Reply to Discussion on ‘Tectonic and environmental controls on Palaeozoic fluvial environments: reassessing the impacts of early land plants on sedimentation’ Journal of the Geological Society, London, https://doi.org/10.1144/jgs2016-063. <i>Journal of the Geological Society</i>, <b>174</b> (5), pp. 950-952. <a href="http://dx.doi.org/10.1144/jgs2017-031"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/116377/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Schobben M; van de Velde S; Gliwa J; Leda L; Korn D; Struck U; Vinzenz Ullman C; Hairapetian V; Ghaderi A; Korte C (2017) Latest Permian carbonate-carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation. <i>Climate of the Past</i>, <b>13</b> (11), pp. 1635-1659. <a href="http://dx.doi.org/10.5194/cp-13-1635-2017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/123041/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Schoepfer SD; Tobin T; Witts JD; Newton RJ (2017) Intermittent euxinia in the high-latitude James Ross Basin during the latest Cretaceous and earliest Paleocene. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>477</b> , pp. 40-54. <a href="http://dx.doi.org/10.1016/j.palaeo.2017.04.013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/115304/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Shields GA; Mills BJW (2017) Tectonic controls on the long-term carbon isotope mass balance. <i>Proceedings of the National Academy of Sciences</i>, <b>114</b> (17), pp. 4318-4323. <a href="http://dx.doi.org/10.1073/pnas.1614506114"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/114569/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Smrzka D; Zwicker J; Kolonic S; Birgel D; Little CTS; Marzouk AM; Chellai EH; Wagner T; Peckmann J (2017) Methane seepage in a Cretaceous greenhouse world recorded by an unusual carbonate deposit from the Tarfaya Basin, Morocco. <i>The Depositional Record</i>, <b>3</b> (1), pp. 4-37. <a href="http://dx.doi.org/10.1002/dep2.24"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/112186/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Song H; Jiang G; Poulton SW; Wignall PB; Tong J; Song H; An Z; Chu D; Tian L; She Z (2017) The onset of widespread marine red beds and the evolution of ferruginous oceans. <i>Nature Communications</i>, <b>8</b> , 399. <a href="http://dx.doi.org/10.1038/s41467-017-00502-x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/120715/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Statham PJ; Homoky WB; Parker ER; Klar JK; Silburn B; Poulton SW; Kröger S; Pearce RB; Harris EL (2017) Extending the applications of sediment profile imaging to geochemical interpretations using colour. <i>Continental Shelf Research</i>, . <a href="http://dx.doi.org/10.1016/j.csr.2017.12.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/124802/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Sun YD; Liu XT; Yan JX; Li B; Chen B; Bond DPG; Joachimski MM; Wignall PB; Wang X; Lai XL (2017) Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>465</b> (A), pp. 42-63. <a href="http://dx.doi.org/10.1016/j.palaeo.2016.10.013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/108745/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Tindall JC; Haywood AM; Thirumalai K (2017) Modeling the Stable Water Isotope Expression of El Niño in the Pliocene: Implications for the Interpretation of Proxy Data. <i>Paleoceanography</i>, <b>32</b> (8), pp. 881-902. <a href="http://dx.doi.org/10.1002/2016PA003059"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/120121/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Tostevin R; He T; Turchyn AV; Wood RA; Penny AM; Bowyer F; Antler G; Shields GA (2017) Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate. <i>Precambrian Research</i>, <b>290</b> , pp. 113-125. <a href="http://dx.doi.org/10.1016/j.precamres.2017.01.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/134350/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Walker FM; Dunhill AM; Woods MA; Newell AJ; Benton MJ (2017) Assessing sampling of the fossil record in a geographically and stratigraphically constrained dataset: the Chalk Group of Hampshire, southern UK. <i>Journal of the Geological Society</i>, <b>174</b> (3), pp. 509-521. <a href="http://dx.doi.org/10.1144/jgs2016-093"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/108329/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wang L; Wignall PB; Sun Y; Yan C; Zhang Z; Lai X (2017) New Permian-Triassic conodont data from Selong (Tibet) and the youngest occurrence of Vjalovognathus. <i>Journal of Asian Earth Sciences</i>, <b>146</b> , pp. 152-167. <a href="http://dx.doi.org/10.1016/j.jseaes.2017.05.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/116518/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Watson AJ; Lenton TM; Mills BJW (2017) Ocean de-oxygenation, the global phosphorus cycle, and the possibility of human-caused large-scale ocean anoxia. <i>Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences</i>, <b>375</b> (2102), 20160318. <a href="http://dx.doi.org/10.1098/rsta.2016.0318"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/119156/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Williscroft K; Grasby SE; Beauchamp B; Little CTS; Dewing K; Birgel D; Poulton T; Hryniewicz K (2017) Extensive Lower Cretaceous (Albian) methane seepage on Ellef Ringnes Island, Canadian High Arctic. <i>Geological Society of America Bulletin</i>, <b>129</b> (7-8), pp. 788-805. <a href="http://dx.doi.org/10.1130/B31601.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/112175/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Zerkle AL; Poulton SW; Newton RJ; Mettam C; Claire MW; Bekker A; Junium CK (2017) Onset of the aerobic nitrogen cycle during the Great Oxidation Event. <i>Nature</i>, <b>542</b> (7642), pp. 392-512. <a href="http://dx.doi.org/10.1038/nature20826"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/108920/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Zhang ZT; Sun YD; Lai XL; Joachimski MM; Wignall PB (2017) Early Carnian conodont fauna at Yongyue, Zhenfeng area and its implication for Ladinian-Carnian subdivision in Guizhou, South China. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>486</b> , pp. 142-157. <a href="http://dx.doi.org/10.1016/j.palaeo.2017.02.011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/112226/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>

2016

März C; Brumsack HJ (2016) Anoxic oceans. <i>Encyclopedia of Earth Sciences Series</i>, Part 2, pp. 20-23. <a href="http://dx.doi.org/10.1007/978-94-007-6644-0_216-2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Atkins AL; Shaw S; Peacock CL (2016) Release of Ni from birnessite during transformation of birnessite to todorokite: Implications for Ni cycling in marine sediments. <i>Geochimica et Cosmochimica Acta</i>, <b>189</b> , pp. 158-183. <a href="http://dx.doi.org/10.1016/j.gca.2016.06.007"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/102613/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Bapst DW; Wright AM; Matzke NJ; Lloyd GT (2016) Topology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria). <i>Biology Letters</i>, <b>12</b> (7), 20160237. <a href="http://dx.doi.org/10.1098/rsbl.2016.0237"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/110090/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Barlow NLM; Bentley MJ; Spada G; Evans DJA; Hansom JD; Brader MD; White DA; Zander A; Berg S (2016) Testing models of ice cap extent, South Georgia, sub-Antarctic. <i>Quaternary Science Reviews</i>, <b>154</b> , pp. 157-168. <a href="http://dx.doi.org/10.1016/j.quascirev.2016.11.007"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/107105/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Bell JB; Aquilina A; Woulds C; Glover AG; Little CTS; Reid WDK; Hepburn LE; Newton J; Mills RA (2016) Geochemistry, faunal composition and trophic structure in reducing sediments on the southwest South Georgia margin. <i>Royal Society Open Science</i>, <b>3</b> , 160284. <a href="http://dx.doi.org/10.1098/rsos.160284"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/104318/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Bell JB; Woulds C; Brown LE; Sweeting CJ; Reid WDK; Little CTS; Glover AG (2016) Macrofaunal ecology of sedimented hydrothermal vents in the Bransfield Strait, Antarctica. <i>Frontiers in Marine Science</i>, <b>3</b> , 32. <a href="http://dx.doi.org/10.3389/fmars.2016.00032"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/97151/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Benson RBJ; Butler RJ; Alroy J; Mannion PD; Carrano MT; Lloyd GT (2016) Near-Stasis in the Long-Term Diversification of Mesozoic Tetrapods. <i>PLOS Biology</i>, <b>14</b> (1), pp. e1002359-e1002359. <a href="http://dx.doi.org/10.1371/journal.pbio.1002359"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bijkerk JF; Eggenhuisen JT; Kane IA; Meijer N; Waters CN; Wignall PB; McCaffrey WD (2016) Fluvio-Marine Sediment Partitioning as a Function of Basin Water Depth. <i>Journal of Sedimentary Research</i>, <b>86</b> (3), pp. 217-235. <a href="http://dx.doi.org/10.2110/jsr.2016.9"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/92507/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Chen T; Robinson LF; Beasley MP; Claxton LM; Andersen MB; Gregoire LJ; Wadham J; Fornari DJ; Harpp KS (2016) Ocean mixing and ice-sheet control of last deglacial seawater ²³⁴U/²³⁸U evolution. <i>Science</i>, <b>354</b> (6312), pp. 626-629. <a href="http://dx.doi.org/10.1126/science.aag1015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/105167/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Clarke JT; Lloyd GT; Friedman M (2016) Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <b>113</b> (41), pp. 11531-11536. <a href="http://dx.doi.org/10.1073/pnas.1607237113"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/110089/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Clarkson MO; Wood RA; Poulton SW; Richoz S; Newton RJ; Kasemann SA; Bowyer F; Krystyn L (2016) Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. <i>Nature Communications</i>, <b>7</b> , pp. 1-9. <a href="http://dx.doi.org/10.1038/ncomms12236"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/102694/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Di Nezio PN; Timmerman A; Tierney JE; Jin F-F; Otto-Bliesner B; Rosenbloom N; Mapes B; Neale R; Ivanovic RF; Montenegro A (2016) The climate response of the Indo-Pacific warm pool to glacial sea level. <i>Paleoceanography</i>, <b>31</b> (6), pp. 866-894. <a href="http://dx.doi.org/10.1002/2015PA002890"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/100384/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dowsett HJ; Dolan AM; Rowley D; Moucha R; Forte AM; Mitrovica JX; Pound M; Salzmann U; Robinson M; Chandler M (2016) The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. <i>Climate of the Past</i>, <b>12</b> (7), pp. 1519-1538. <a href="http://dx.doi.org/10.5194/cp-12-1519-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/101344/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Du H; Chen W; Cai P; Rong X; Dai K; Peacock CL; Huang Q (2016) Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites. <i>Scientific Reports</i>, <b>6</b> , 19499. <a href="http://dx.doi.org/10.1038/srep19499"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/96075/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dunhill AM; Bestwick J; Narey H; Sciberras J (2016) Dinosaur biogeographic structure and Mesozoic continental fragmentation: a network-based approach. <i>Journal of Biogeography</i>, <b>43</b> (9), pp. 1691-1704. <a href="http://dx.doi.org/10.1111/jbi.12766"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/95990/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Düsterhus A; Rovere A; Carlson A; Horton B; Klemann V; Tarasov L; Barlow N; Bradwell T; Clark J; Dutton A (2016) Palaeo sea-level and ice-sheet databases: problems, strategies and perspectives. <i>Climate of the Past</i>, <b>12</b> (4), pp. 911-921. <a href="http://dx.doi.org/10.5194/cp-12-911-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Fuller AJ; Shaw S; Peacock CL; Trivedi D; Burke IT (2016) EXAFS Study of Sr sorption to Illite, Goethite, Chlorite, and Mixed Sediment under Hyperalkaline Conditions. <i>Langmuir</i>, <b>32</b> (12), pp. 2937-2946. <a href="http://dx.doi.org/10.1021/acs.langmuir.5b04633"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/96221/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Goldberg T; Poulton SW; Wagner T; Kolonic SF; Rehkamper M (2016) Molybdenum drawdown during Cretaceous Oceanic Anoxic Event 2. <i>Earth and Planetary Science Letters</i>, <b>440</b> , pp. 81-91. <a href="http://dx.doi.org/10.1016/j.epsl.2016.02.006"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/96382/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
GRASBY SE; BEAUCHAMP B; BOND DPG; WIGNALL PB; SANEI H (2016) Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea. <i>Geological Magazine</i>, <b>153</b> (02), pp. 285-297. <a href="http://dx.doi.org/10.1017/S0016756815000436"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Gregoire LJ; Otto-Bliesner B; Valdes PJ; Ivanovic R (2016) Abrupt Bølling warming and ice saddle collapse contributions to the Meltwater Pulse 1a rapid sea level rise. <i>Geophysical Research Letters</i>, <b>43</b> (17), pp. 9130-9137. <a href="http://dx.doi.org/10.1002/2016GL070356"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/103908/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Haywood AM; Dowsett HJ; Dolan AM (2016) Integrating geological archives and climate models for the mid-Pliocene warm period. <i>Nature Communications</i>, <b>7</b> , pp. 10646-10646. <a href="http://dx.doi.org/10.1038/ncomms10646"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Dowsett HJ; Dolan AM; Rowley D; Abe-Ouchi A; Otto-Bliesner B; Chandler MA; Hunter SJ; Lunt DJ; Pound M (2016) The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: Scientific Objectives and Experimental Design. <i>Climate of the Past</i>, <b>12</b> (3), pp. 663-675. <a href="http://dx.doi.org/10.5194/cp-12-663-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/95826/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Henkel S; Kasten S; Poulton SW; Staubwasser M (2016) Determination of the stable iron isotopic composition of sequentially leached iron phases in marine sediments. <i>Chemical Geology</i>, <b>421</b> , pp. 93-102. <a href="http://dx.doi.org/10.1016/j.chemgeo.2015.12.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/93153/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hibbett D; Blanchette R; Kenrick P; Mills BJW (2016) Climate, decay, and the death of the coal forests. <i>Current Biology</i>, <b>26</b> (13), pp. R563-R567. <a href="http://dx.doi.org/10.1016/j.cub.2016.01.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/102814/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Howell FW; Haywood AM; Dowsett HJ; Pickering SJ (2016) Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation. <i>Earth and Planetary Science Letters</i>, <b>441</b> , pp. 133-142. <a href="http://dx.doi.org/10.1016/j.epsl.2016.02.036"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/95856/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Howell FW; Haywood AM; Otto-Bliesner BL; Bragg FJ; Chan W-L; Chandler MA; Contoux C; Kamae Y; Abe-Ouchi A; Rosenbloom NA (2016) Arctic sea ice simulation in the PlioMIP ensemble. <i>Climate of the Past</i>, <b>12</b> (3), pp. 749-767. <a href="http://dx.doi.org/10.5194/cp-12-749-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/97095/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hryniewicz K; Bitner MA; Durska E; Hagstrom J; Hjálmarsdóttir HR; Jenkins RG; Little CTS; Miyajima Y; Nakrem HA; Kaim A (2016) Paleocene methane seep and wood-fall marine environments from Spitsbergen, Svalbard. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>462</b> , pp. 41-56. <a href="http://dx.doi.org/10.1016/j.palaeo.2016.08.037"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/104268/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic RF; Gregoire LJ; Kageyama M; Roche DM; Valdes PJ; Burke A; Drummond R; Peltier WR; Tarasov L (2016) Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1) – PMIP4 Core experiment design and boundary conditions. <i>Geoscientific Model Development</i>, <b>9</b> (7), pp. 2563-2587. <a href="http://dx.doi.org/10.5194/gmd-9-2563-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/103124/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Jamieson RA; Baldini JUL; Brett MJ; Taylor J; Ridley HE; Ottley CJ; Prufer KM; Wassenburg JA; Scholz D; Breitenbach SFM (2016) Intra- and inter-annual uranium concentration variability in a Belizean stalagmite controlled by prior aragonite precipitation: A new tool for reconstructing hydro-climate using aragonitic speleothems. <i>Geochimica et Cosmochimica Acta</i>, <b>190</b> , pp. 332-346. <a href="http://dx.doi.org/10.1016/j.gca.2016.06.037"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Jerram DA; Widdowson M; Wignall PB; Sun Y; Lai XL; Bond DPG; Torsvik TH (2016) Sub-marine palaeoenvironments during Emeishan flood basalt volcanism, SW China: implications for plume-lithosphere interaction during the Capitanian (‘end Guadalupian’) extinction event. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>441</b> (1), pp. 65-73. <a href="http://dx.doi.org/10.1016/j.palaeo.2015.06.009"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/87198/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Jimenez-Arias JL; Mata MP; Corzo A; Poulton SW; März C; Sanchez-Bellon A; Martinez-Lopez J; Casas-Ruiz M; Garcia-Robledo E; Bohorquez J (2016) A multiproxy study distinguishes environmental change from diagenetic alteration in the recent sedimentary record of the inner Cadiz Bay (SW Spain). <i>The Holocene</i>, <b>26</b> (9), pp. 1355-1370. <a href="http://dx.doi.org/10.1177/0959683616640046"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/98779/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Lechleitner FA; Baldini JUL; Breitenbach SFM; Fohlmeister J; McIntyre C; Goswami B; Jamieson RA; van der Voort TS; Prufer K; Marwan N (2016) Hydrological and climatological controls on radiocarbon concentrations in a tropical stalagmite. <i>Geochimica et Cosmochimica Acta</i>, <b>194</b> , pp. 233-252. <a href="http://dx.doi.org/10.1016/j.gca.2016.08.039"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lechleitner FA; Fohlmeister J; McIntyre C; Baldini LM; Jamieson RA; Hercman H; Gąsiorowski M; Pawlak J; Stefaniak K; Socha P (2016) A novel approach for construction of radiocarbon-based chronologies for speleothems. <i>Quaternary Geochronology</i>, <b>35</b> , pp. 54-66. <a href="http://dx.doi.org/10.1016/j.quageo.2016.05.006"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lenton TM; Dahl TW; Daines SJ; Mills BJW; Ozaki K; Saltzman MR; Porada P (2016) Earliest land plants created modern levels of atmospheric oxygen. <i>Proceedings of the National Academy of Sciences</i>, <b>113</b> (35), pp. 9704-9709. <a href="http://dx.doi.org/10.1073/pnas.1604787113"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/102812/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Lloyd GT (2016) Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. <i>Biological Journal of the Linnean Society</i>, <b>118</b> (1), pp. 131-151. <a href="http://dx.doi.org/10.1111/bij.12746"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lloyd GT; Bapst DW; Friedman M; Davis KE (2016) Probabilistic divergence time estimation without branch lengths: dating the origins of dinosaurs, avian flight and crown birds. <i>Biology Letters</i>, <b>12</b> (11), 20160609. <a href="http://dx.doi.org/10.1098/rsbl.2016.0609"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/110088/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Long AJ; Barlow NLM; Dawson S; Hill J; Innes J; Kelham C; Milne F; Dawson A (2016) Lateglacial and Holocene relative sea-level changes and first evidence for the Storegga tsunami in Sutherland, Scotland. <i>Journal of Quaternary Science</i>, <b>31</b> (3), pp. 239-255. <a href="http://dx.doi.org/10.1002/jqs.2862"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lutz S; Anesio AM; Raiswell R; Edwards A; Newton RJ; Gill F; Benning LG (2016) The biogeography of red snow microbiomes and their role in melting arctic glaciers. <i>Nature Communications</i>, <b>7</b> . <a href="http://dx.doi.org/10.1038/ncomms11968"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/102614/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Magnall JM; Gleeson SA; Stern RA; Newton RJ; Poulton SW; Paradis S (2016) Open system sulphate reduction in a diagenetic environment – isotopic analysis of barite (δ³⁴S and δ¹⁸O) and pyrite (δ³⁴S) from the Tom and Jason Late Devonian Zn-Pb-Ba deposits, Selwyn Basin, Canada. <i>Geochimica et Cosmochimica Acta</i>, <b>180</b> , pp. 146-163. <a href="http://dx.doi.org/10.1016/j.gca.2016.02.015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/107700/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Meinhardt A-K; März C; Schuth S; Lettmann KA; Schnetger B; Wolff J-O; Brumsack H-J (2016) Diagenetic regimes in Arctic Ocean sediments: Implications for sediment geochemistry and core correlation. <i>Geochimica et Cosmochimica Acta</i>, <b>188</b> , pp. 125-146. <a href="http://dx.doi.org/10.1016/j.gca.2016.05.032"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/99882/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Mills BJW; Belcher CM; Lenton TM; Newton RJ (2016) A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic. <i>Geology</i>, <b>44</b> (12), pp. 1023-1026. <a href="http://dx.doi.org/10.1130/G38231.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/106959/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
März C; Wagner T; Aqleh S; Al-Alaween M; Van den Boorn S; Podlaha OG; Kolonic S; Poulton SW; Schnetger B; Brumsack H-J (2016) Repeated enrichment of trace metals and organic carbon on an Eocene high energy shelf caused by anoxia and reworking. <i>Geology</i>, <b>44</b> (12), pp. 1011-1014. <a href="http://dx.doi.org/10.1130/G38412.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/105183/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Och LM; Cremonese L; Shields-Zhou GA; Poulton SW; Struck U; Ling H; Li D; Chen X; Manning C; Thirlwall M (2016) Palaeoceanographic controls on spatial redox distribution over the Yangtze Platform during the Ediacaran–Cambrian transition. <i>Sedimentology</i>, <b>63</b> (2), pp. 378-410. <a href="http://dx.doi.org/10.1111/sed.12220"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/89025/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Och LM; Mueller B; März C; Wichser A; Vologina EG; Sturm M (2016) Elevated uranium concentrations in Lake Baikal sediments: Burial and early diagenesis. <i>Chemical Geology</i>, <b>441</b> , pp. 92-105. <a href="http://dx.doi.org/10.1016/j.chemgeo.2016.08.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/103381/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Petrash DA; Gueneli N; Brocks JJ; Méndez-Dot JA; Gonzalez-Arismendi G; Poulton SW; Konhauser KO (2016) Black shale deposition and early diagenetic dolomite cementation during Oceanic Anoxic Event 1: The mid-Cretaceous Maracaibo Platform, northwestern South America. <i>American Journal of Science</i>, <b>316</b> (7), pp. 669-711. <a href="http://dx.doi.org/10.2475/07.2016.03"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/98760/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Pierre C; Blanc-Valleron M-M; Caquineau S; März C; Ravelo AC; Takahashi K; Alvarez Zarikian C (2016) Mineralogical, geochemical and isotopic characterization of authigenic carbonates from the methane-bearing sediments of the Bering Sea continental margin (IODP Expedition 323, Sites U1343–U1345). <i>Deep Sea Research Part II: Topical Studies in Oceanography</i>, <b>125-126</b> , pp. 133-144. <a href="http://dx.doi.org/10.1016/j.dsr2.2014.03.011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Raiswell R; Hawkings JR; Benning LG; Baker AR; Death R; Albani S; Mahowald N; Krom MD; Poulton SW; Wadham J (2016) Potentially bioavailable iron delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans. <i>Biogeosciences</i>, <b>13</b> , pp. 3887-3900. <a href="http://dx.doi.org/10.5194/bg-13-3887-2016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/102137/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Robbins LJ; Lalonde SV; Planavsky NJ; Partin CA; Reinhard CT; Kendall B; Scott C; Hardisty DS; Gill BC; Alessi DS (2016) Trace elements at the intersection of marine biological and geochemical evolution. <i>Earth-Science Reviews</i>, <b>163</b> , pp. 323-348. <a href="http://dx.doi.org/10.1016/j.earscirev.2016.10.013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/107450/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Rosewarne PJ; Mortimer RJG; Newton RJ; Grocock C; Wing CD; Dunn AM (2016) Feeding behaviour, predatory functional responses and trophic interactions of the invasive Chinese mitten crab (Eriocheir sinensis) and signal crayfish (Pacifastacus leniusculus). <i>Freshwater Biology</i>, <b>61</b> (4), pp. 426-443. <a href="http://dx.doi.org/10.1111/fwb.12717"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/95687/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ruffell A; Simms MJ; Wignall PB (2016) The Carnian Humid Episode of the late Triassic: a review. <i>Geological Magazine</i>, <b>153</b> (2), pp. 271-284. <a href="http://dx.doi.org/10.1017/S0016756815000424"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90239/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Rush D; Osborne KA; Birgel D; Kappler A; Hirayama H; Peckmann J; Poulton SW; Nickel JC; Mangelsdorf K; Kalyuzhnaya M (2016) The bacteriohopanepolyol inventory of novel aerobic methane oxidising bacteria reveals new biomarker signatures of aerobic methanotrophy in marine systems. <i>PLoS ONE</i>, <b>11</b> (11), e0165635. <a href="http://dx.doi.org/10.1371/journal.pone.0165635"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/108990/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Saether KP; Jingeng S; Little CTS; Campbell KA (2016) New records and a new species of bivalve (Mollusca: Bivalvia) from Miocene hydrocarbon seep deposits, North Island, New Zealand. <i>Zootaxa</i>, <b>4154</b> (1), pp. 1-26. <a href="http://dx.doi.org/10.11646/zootaxa.4154.1.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/103914/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Schmidt A; Skeffington RA; Thordarson T; Self S; Forster PM; Rap A; Ridgwell A; Fowler D; Wilson BM; Mann G (2016) Selective environmental stress from sulphur emitted by continental flood basalt eruptions. <i>Nature Geoscience</i>, <b>9</b> (1), pp. 77-82. <a href="http://dx.doi.org/10.1038/ngeo2588"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/92239/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Shennan I; Garrett E; Barlow N (2016) Detection limits of tidal-wetland sequences to identify variable rupture modes of megathrust earthquakes. <i>Quaternary Science Reviews</i>, <b>150</b> , pp. 1-30. <a href="http://dx.doi.org/10.1016/j.quascirev.2016.08.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Song H; Tong J; Wignall PB; Luo M; Tian L; Song H; Huang Y; Chu D (2016) Early Triassic disaster and opportunistic foraminifers in South China. <i>Geological Magazine</i>, <b>153</b> (2), pp. 298-315. <a href="http://dx.doi.org/10.1017/S0016756815000497"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90242/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Steffen W; Leinfelder R; Zalasiewicz J; Waters CN; Williams M; Summerhayes C; Barnosky AD; Cearreta A; Crutzen P; Edgeworth M (2016) Stratigraphic and Earth System approaches to defining the Anthropocene. <i>Earth's Future</i>, <b>4</b> (8), pp. 324-345. <a href="http://dx.doi.org/10.1002/2016EF000379"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/104069/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Sun YD; Wignall PB; Joachimski MM; Bond DPG; Grasby SE; Lai XL; Wang LN; Zhang ZT; Sun S (2016) Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China. <i>Earth and Planetary Science Letters</i>, <b>444</b> , pp. 88-100. <a href="http://dx.doi.org/10.1016/j.epsl.2016.03.037"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Tindall JC; Haywood AM; Howell FW (2016) Accounting for Centennial Scale Variability when Detecting Changes in ENSO: a study of the Pliocene. <i>Paleoceanography</i>, <b>31</b> (10), pp. 1330-1349. <a href="http://dx.doi.org/10.1002/2016PA002951"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/105707/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Tostevin R; Shields GA; Tarbuck GM; He T; Clarkson MO; Wood RA (2016) Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. <i>Chemical Geology</i>, <b>438</b> , pp. 146-162. <a href="http://dx.doi.org/10.1016/j.chemgeo.2016.06.027"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/134352/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Tostevin R; Wood RA; Shields GA; Poulton SW; Guilbaud R; Bowyer F; Penny AM; He T; Curtis A; Hoffman KH (2016) Low-oxygen waters limited habitable space for early animals. <i>Nature Communications</i>, <b>7</b> , 12818. <a href="http://dx.doi.org/10.1038/ncomms12818"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/105158/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
VAN DE SCHOOTBRUGGE B; WIGNALL PB (2016) Special Issue Mass Extinctions–Preface. <i>Geological Magazine</i>, <b>153</b> (02), pp. 193-194. <a href="http://dx.doi.org/10.1017/S0016756815001107"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
VAN DE SCHOOTBRUGGE B; WIGNALL PB (2016) A tale of two extinctions: converging end-Permian and end-Triassic scenarios. <i>Geological Magazine</i>, <b>153</b> (02), pp. 332-354. <a href="http://dx.doi.org/10.1017/S0016756815000643"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
von der Heydt AS; Dijkstra HA; van de Wal RSW; Caballero R; Crucifix M; Foster GL; Huber M; Kohler P; Rohling E; Valdes PJ (2016) Lessons on climate sensitivity from past climate changes. <i>Current Climate Change Reports</i>, <b>2</b> (4), pp. 148-158. <a href="http://dx.doi.org/10.1007/s40641-016-0049-3"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/104547/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wang L; Wignall PB; Wang Y; Jiang H; Sun Y; Li G; Yuan J; Lai X (2016) Depositional conditions and revised age of the Permo-Triassic microbialites at Gaohua section, Cili County (Hunan Province, South China). <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>443</b> , pp. 156-166. <a href="http://dx.doi.org/10.1016/j.palaeo.2015.11.032"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wang M; Lloyd GT (2016) Rates of morphological evolution are heterogeneous in early cretaceous birds. <i>Proceedings of the Royal Society B: Biological Sciences</i>, <b>283</b> (1828), 20160214. <a href="http://dx.doi.org/10.1098/rspb.2016.0214"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/125270/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wassenburg JA; Scholz D; Jochum KP; Cheng H; Oster J; Immenhauser A; Richter DK; Häger T; Jamieson RA; Baldini JUL (2016) Determination of aragonite trace element distribution coefficients from speleothem calcite–aragonite transitions. <i>Geochimica et Cosmochimica Acta</i>, <b>190</b> , pp. 347-367. <a href="http://dx.doi.org/10.1016/j.gca.2016.06.036"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
WIGNALL PB; BOND DPG; SUN Y; GRASBY SE; BEAUCHAMP B; JOACHIMSKI MM; BLOMEIER DPG (2016) Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation. <i>Geological Magazine</i>, <b>153</b> (02), pp. 316-331. <a href="http://dx.doi.org/10.1017/S0016756815000588"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Van Dd Schootbrugge B (2016) Middle Phanerozoic mass extinctions and a tribute to the work of Professor Tony Hallam. <i>Geological Magazine</i>, <b>153</b> (2), pp. 195-200. <a href="http://dx.doi.org/10.1017/S0016756815000199"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90238/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Witts JD; Whittle RJ; Wignall PB; Crame JA; Francis JE; Newton RJ; Bowman VC (2016) Macrofossil evidence for a rapid and severe Cretaceous–Paleogene mass extinction in Antarctica. <i>Nature Communications</i>, <b>7</b> , 11738. <a href="http://dx.doi.org/10.1038/ncomms11738"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/99315/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wright AM; Lloyd GT; Hillis DM (2016) Modeling Character Change Heterogeneity in Phylogenetic Analyses of Morphology through the Use of Priors. <i>Systematic Biology</i>, <b>65</b> (4), pp. 602-611. <a href="http://dx.doi.org/10.1093/sysbio/syv122"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Yin D; Peakall J; Parsons D; Chen Z; Averill HM; Wignall P; Best J (2016) Bedform genesis in bedrock substrates: Insights into formative processes from a new experimental approach and the importance of suspension-dominated abrasion. <i>Geomorphology</i>, <b>255</b> , pp. 26-38. <a href="http://dx.doi.org/10.1016/j.geomorph.2015.12.008"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/96223/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>

2015

Wignall PB (2015) <i>The Worst of Times How Life on Earth Survived Eighty Million Years of Extinctions</i>. Princeton University Press.
Woodroffe SA; Barlow NLM (2015) Reference water level and tidal datum. <i>In:</i> Shennan I; Long A; Horton B eds. <i>Handbook of sea level research</i>, Wiley, .
Amano K; Little CTS; Campbell KA; Jenkins RG; Saether KP (2015) Paleocene and Miocene Thyasira sensu stricto (Bivalvia: Thyasiridae) from chemosynthetic communities from Japan and New Zealand. <i>Nautilus</i>, <b>129</b> (2), pp. 43-53. <a href="http://eprints.whiterose.ac.uk/85210/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Baker JCA; Hunt SFP; Clerici SJ; Newton RJ; Bottrell SH; Leng MJ; Heaton THE; Helle G; Argollo J; Gloor M (2015) Oxygen isotopes in tree rings show good coherence between species and sites in Bolivia. <i>Global and Planetary Change</i>, <b>133</b> , pp. 298-308. <a href="http://dx.doi.org/10.1016/j.gloplacha.2015.09.008"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/91272/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Bell MA; Lloyd GT (2015) strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. <i>Palaeontology</i>, <b>58</b> (2), pp. 379-389. <a href="http://dx.doi.org/10.1111/pala.12142"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bond D; Wignall P; Joachimski M; Sun Y; Savov IP; Grasby S; Beauchamp B; Blomeier D (2015) An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification. <i>Geological Society of America Bulletin</i>, <b>127</b> (9-10), pp. 1411-1421. <a href="http://dx.doi.org/10.1130/B31216.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/85117/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Brusatte SL; Butler RJ; Barrett PM; Carrano MT; Evans DC; Lloyd GT; Mannion PD; Norell MA; Peppe DJ; Upchurch P (2015) The extinction of the dinosaurs. <i>Biological Reviews</i>, <b>90</b> (2), pp. 628-642. <a href="http://dx.doi.org/10.1111/brv.12128"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Burke IT; Mosselmans FW; Shaw S; Peacock CL; Benning LG; Coker VS (2015) Impact of the Diamond Light Source on research in Earth and environmental sciences: current work and future perspectives. <i>Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences</i>, <b>373</b> (2036). <a href="http://dx.doi.org/10.1098/rsta.2013.0151"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/84307/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Chen X; Ling HF; Vance D; Shields-Zhou GA; Zhu M; Poulton SW; Och LM; Jiang SY; Li D; Cremonese L (2015) Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. <i>Nature Communications</i>, <b>6</b> , 7142. <a href="http://dx.doi.org/10.1038/ncomms8142"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/86399/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Clarkson MO; Kasemann SA; Wood RA; Lenton TM; Daines SJ; Richoz S; Ohnemueller F; Meixner A; Poulton SW; Tipper ET (2015) Ocean acidification and the Permo-Triassic mass extinction. <i>Science</i>, <b>348</b> (6231), pp. 229-232. <a href="http://dx.doi.org/10.1126/science.aaa0193"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/85124/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Cleary TJ; Moon BC; Dunhill AM; Benton MJ (2015) The fossil record of ichthyosaurs, completeness metrics and sampling biases. <i>Palaeontology</i>, <b>58</b> (3), pp. 521-536. <a href="http://dx.doi.org/10.1111/pala.12158"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90722/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Close R; Friedman M; Lloyd G; Benson R (2015) Evidence for a Mid-Jurassic Adaptive Radiation in Mammals. <i>Current Biology</i>, <b>25</b> (16), pp. 2137-2142. <a href="http://dx.doi.org/10.1016/j.cub.2015.06.047"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dal Corso J; Gianolla P; Newton RJ; Franceschi M; Roghi G; Caggiati M; Raucsik B; Budai T; Haas J; Preto N (2015) Carbon isotope records reveal synchronicity between carbon cycle perturbation and the "Carnian Pluvial Event" in the Tethys realm (Late Triassic). <i>Global and Planetary Change</i>, <b>127</b> , pp. 79-90. <a href="http://dx.doi.org/10.1016/j.gloplacha.2015.01.013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dal Corso J; Roghi G; Kustatscher E; Preto N; Gianolla P; Manfrin S; Mietto P (2015) Ammonoid-calibrated sporomorph assemblages reflect a shift from hygrophytic to xerophytic elements in the late Anisian (Middle Triassic) of the Southern Alps (Italy). <i>Review of Palaeobotany and Palynology</i>, <b>218</b> , pp. 15-27. <a href="http://dx.doi.org/10.1016/j.revpalbo.2014.02.010"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Danise S; Twitchett RJ; Little CTS (2015) Environmental controls on Jurassic marine ecosystems during global warming. <i>Geology (Boulder)</i>, <b>43</b> (3), pp. 263-266. <a href="http://dx.doi.org/10.1130/G36390.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/83695/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dolan AM; Haywood AM; Hunter SJ; Tindall JC; Dowsett HJ; Hill DJ; Pickering SJ (2015) Modelling the enigmatic Late Pliocene Glacial Event - Marine Isotope Stage M2. <i>GLOBAL AND PLANETARY CHANGE</i>, <b>128</b> , pp. 47-60. <a href="http://dx.doi.org/10.1016/j.gloplacha.2015.02.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dolan AM; Hunter SJ; Hill DJ; Haywood AM; Koenig SJ; Otto-Bliesner BL; Abe-Ouchi A; Bragg F; Chan W-L; Chandler MA (2015) Using results from the PlioMIP ensemble to investigate the Greenland Ice Sheet during the mid-Pliocene Warm Period. <i>Climate of the Past</i>, <b>11</b> (3), pp. 403-424. <a href="http://dx.doi.org/10.5194/cp-11-403-2015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dunhill AM; Wills MA (2015) Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis. <i>Nature Communications</i>, <b>6</b> , 7980. <a href="http://dx.doi.org/10.1038/ncomms8980"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90716/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Fuller AJ; Shaw S; Ward MB; Haigh SJ; Mosselmans JFW; Peacock CL; Stackhouse S; Dent AJ; Trivedi D; Burke IT (2015) Caesium incorporation and retention in illite interlayers. <i>Applied Clay Science</i>, <b>108</b> , pp. 128-134. <a href="http://dx.doi.org/10.1016/j.clay.2015.02.008"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/85033/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Garrett E; Barlow N; Cool H; Kaufman D; Shennan I; Zander P (2015) Constraints on regional drivers of relative sea-level change around Cordova, Alaska. <i>Quaternary Science Reviews</i>, <b>113</b> , pp. 48-59. <a href="http://dx.doi.org/10.1016/j.quascirev.2014.12.002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Georgieva MN; Little CTS; Glover AG; Ball AD (2015) Mineralization of Alvinella polychaete tubes at hydrothermal vents. <i>Geobiology</i>, <b>13</b> (2), pp. 152-169. <a href="http://dx.doi.org/10.1111/gbi.12123"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/83486/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Georgieva MN; Wiklund H; Bell JB; Eilertsen MH; Mills RA; Little CTS; Glover AG (2015) A chemosynthetic weed: the tubeworm Sclerolinum contortum is a bipolar, cosmopolitan species. <i>BMC Evolutionary Biology</i>, <b>15</b> , 280. <a href="http://dx.doi.org/10.1186/s12862-015-0559-y"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/92893/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gomez N; Gregoire LJ; Mitrovica JX; Payne AJ (2015) Laurentide-Cordilleran Ice Sheet saddle collapse as a contribution to meltwater pulse 1A. <i>Geophysical Research Letters</i>, <b>42</b> (10), pp. 3954-3962. <a href="http://dx.doi.org/10.1002/2015GL063960"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/85255/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Grasby SE; Beauchamp B; Bond DPG; Wignall PB; Talavera C; Galloway JM; Piepjohn K; Reinhardt L; Blomeier D (2015) Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction. <i>Geological Society of America Bulletin</i>, <b>127</b> (9-10), pp. 1331-1347. <a href="http://dx.doi.org/10.1130/B31197.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90235/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gregoire LJ; Valdes PJ; Payne AJ (2015) The relative contribution of orbital forcing and greenhouse gases to the North American deglaciation. <i>Geophysical Research Letters</i>, <b>42</b> (22), pp. 9970-9979. <a href="http://dx.doi.org/10.1002/2015GL066005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/92096/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Guilbaud R; Poulton SW; Butterfield NJ; Zhu M; Shields-Zhou GA (2015) A global transition to ferruginous conditions in the early Neoproterozoic oceans. <i>Nature Geoscience</i>, <b>8</b> (6), pp. 466-470. <a href="http://dx.doi.org/10.1038/ngeo2434"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/87451/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gulick SPS; Jaeger JM; Mix AC; Asahi H; Bahlburg H; Belanger CL; Berbel GBB; Childress L; Cowan E; Drab L (2015) Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska. <i>Proceedings of the National Academy of Sciences</i>, <b>112</b> (49), pp. 15042-15047. <a href="http://dx.doi.org/10.1073/pnas.1512549112"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hamer KC; Newton RJ; Edwards FA; Benedick S; Bottrell SH; Edwards DP (2015) Impacts of selective logging on insectivorous birds in Borneo: The importance of trophic position, body size and foraging height. <i>Biological Conservation</i>, <b>188</b> , pp. 82-88. <a href="http://dx.doi.org/10.1016/j.biocon.2014.09.026"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/91870/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hamilton CA; Lloyd JM; Barlow NLM; Innes JM; Flecker R; Thomas C (2015) Late Glacial to Holocene relative sea level change in Assynt, northwest Scotland, UK. <i>Quaternary Research</i>, <b>84</b> (2), pp. 214-222. <a href="http://dx.doi.org/10.1016/j.yqres.2015.07.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Dowsett HJ; Dolan AM; Rowley D; Abe-Ouchi A; Otto-Bliesner B; Chandler MA; Hunter SJ; Lunt DJ; Pound M (2015) Pliocene Model Intercomparison (PlioMIP) Phase 2: scientific objectives and experimental design. <i>Climate of the Past Discussions</i>, <b>11</b> (4), pp. 4003-4038. <a href="http://dx.doi.org/10.5194/cpd-11-4003-2015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hill DJ (2015) The non-analogue nature of Pliocene temperature gradients. <i>Earth and Planetary Science Letters</i>, <b>425</b> , pp. 232-241. <a href="http://dx.doi.org/10.1016/j.epsl.2015.05.044"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/87717/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hryniewicz K; Hagström J; Hammer Ø; Kaim A; Little CTS; Nakrem HA (2015) Late Jurassic–Early Cretaceous hydrocarbon seep boulders from Novaya Zemlya and their faunas. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>436</b> , pp. 231-244. <a href="http://dx.doi.org/10.1016/j.palaeo.2015.06.036"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/88030/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hryniewicz K; Nakrem HA; Hammer Ø; Little CTS; Kaim A; Sandy MR; Hurum JA (2015) The palaeoecology of latest Jurassic-earliest Cretaceous hydrocarbon seep carbonates from Spitsbergen, Svalbard. <i>Lethaia</i>, <b>48</b> , pp. 353-374. <a href="http://dx.doi.org/10.1111/let.12112"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/85127/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Izon G; Zerkle AL; Zhelezinskaia I; Farquhar J; Newton RJ; Poulton SW; Eigenbrode JL; Claire MW (2015) Multiple oscillations in Neoarchaean atmospheric chemistry. <i>Earth and Planetary Science Letters</i>, <b>431</b> , pp. 264-273. <a href="http://dx.doi.org/10.1016/j.epsl.2015.09.018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/91032/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Jamieson RA; Baldini JUL; Frappier AB; Müller W (2015) Volcanic ash fall events identified using principal component analysis of a high-resolution speleothem trace element dataset. <i>Earth and Planetary Science Letters</i>, <b>426</b> , pp. 36-45. <a href="http://dx.doi.org/10.1016/j.epsl.2015.06.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Jiang H; Joachimski MM; Wignall PB; Zhang M; Lai X (2015) A delayed end-Permian extinction in deep-water locations and its relationship to temperature trends (Bianyang, Guizhou Province, South China). <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>440</b> , pp. 690-695. <a href="http://dx.doi.org/10.1016/j.palaeo.2015.10.002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Johnson K; Purvis G; Lopez-Capel E; Peacock CL; Gray N; Wagner T; März C; Bowen L; Ojeda J; Finlay N (2015) Towards a mechanistic understanding of carbon stabilization in manganese oxides. <i>Nature Communications</i>, <b>6</b> , 7628. <a href="http://dx.doi.org/10.1038/ncomms8628"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/88397/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Koenig SJ; Dolan AM; de Boer B; Stone EJ; Hill DJ; DeConto RM; Abe-Ouchi A; Lunt DJ; Pollard D; Quiquet A (2015) Ice sheet model dependency of the simulated Greenland Ice Sheet in the mid-Pliocene. <i>Climate of the Past</i>, <b>11</b> (3), pp. 369-381. <a href="http://dx.doi.org/10.5194/cp-11-369-2015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Konhauser KO; Robbins LJ; Pecoits E; Peacock CL; Kappler A; Lalonde SV (2015) The Archean nickel famine revisited. <i>Astrobiology</i>, <b>15</b> (10), pp. 804-815. <a href="http://dx.doi.org/10.1089/ast.2015.1301"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/91850/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Little CTS; Birgel D; Boyce AJ; Crame JA; Francis JE; Kiel S; Peckmann J; Pirrie D; Rollinson GK; Witts JD (2015) Late Cretaceous (Maastrichtian) shallow water hydrocarbon seeps from Snow Hill and Seymour Islands, James Ross Basin, Antarctica. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>418</b> , pp. 213-228. <a href="http://dx.doi.org/10.1016/j.palaeo.2014.11.020"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82542/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Littlewood JL; Shaw S; Bots P; Peacock CL; Trivedi D; Burke IT (2015) Effect of solution composition on the recrystallisation of kaolinite to feldspathoids in hyperalkaline conditions: Limitations of pertechnetate incorporation by ion competition effects. <i>Mineralogical Magazine</i>, <b>79</b> (6), pp. 1379-1388. <a href="http://dx.doi.org/10.1180/minmag.2015.079.6.13"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/87065/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Long A; Barlow N; Busschers F; Cohen K; Gehrels W; Wake L (2015) Near-field sea-level variability in northwest Europe and ice sheet stability during the last interglacial. <i>Quaternary Science Reviews</i>, <b>126</b> , pp. 26-40. <a href="http://dx.doi.org/10.1016/j.quascirev.2015.08.021"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Mayanna S; Peacock CL; Schäffner F; Grawunder A; Merten D; Kothe E; Büchel G (2015) Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH. <i>Chemical Geology</i>, <b>402</b> , pp. 6-17. <a href="http://dx.doi.org/10.1016/j.chemgeo.2015.02.029"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/85774/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
März C; Meinhardt A-K; Schnetger B; Brumsack H-J (2015) Silica diagenesis and benthic fluxes in the Arctic Ocean. <i>Marine Chemistry</i>, <b>171</b> , pp. 1-9. <a href="http://dx.doi.org/10.1016/j.marchem.2015.02.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Neumeister S; Gratzer R; Algeo TJ; Bechtel A; Gawlick HJ; Newton RJ; Sachsenhofer RF (2015) Oceanic response to Pliensbachian and Toarcian magmatic events: Implications from an organic-rich basinal succession in the NW Tethys. <i>Global and Planetary Change</i>, <b>126</b> , pp. 62-83. <a href="http://dx.doi.org/10.1016/j.gloplacha.2015.01.007"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/85238/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Pogge von Strandmann PAE; Stüeken EE; Elliot T; Poulton SW; Dehler CM; Canfield DE; Catling DC (2015) Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere. <i>Nature Communications</i>, <b>6</b> , 10157. <a href="http://dx.doi.org/10.1038/ncomms10157"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/93008/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Poulton SW; Henkel S; März C; Urquhart H; Flögel S; Kasten S; Sinninghe Damsté JS; Wagner T (2015) A continental-weathering control on orbitally driven redox-nutrient cycling during Cretaceous Oceanic Anoxic Event 2. <i>Geology</i>, <b>43</b> (11), pp. 963-966. <a href="http://dx.doi.org/10.1130/G36837.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/89281/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Preto N; Breda A; Dal Corso J; Spötl C; Zorzi F; Frisia S (2015) Primary dolomite in the Late Triassic Travenanzes Formation, Dolomites, Northern Italy: Facies control and possible bacterial influence. <i>Sedimentology</i>, <b>62</b> (3), pp. 697-716. <a href="http://dx.doi.org/10.1111/sed.12157"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Robbins LJ; Swanner ED; Lalonde SV; Eickhoff M; Paranich ML; Reinhard CT; Peacock CL; Kappler A; Konhauser KO (2015) Limited Zn and Ni mobility during simulated iron formation diagenesis. <i>Chemical Geology</i>, <b>402</b> , pp. 30-39. <a href="http://dx.doi.org/10.1016/j.chemgeo.2015.02.037"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/86170/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Saher M; Gehrels W; Barlow N; Long A; Haigh I; Blaauw M (2015) Sea-level changes in Iceland and the influence of the North Atlantic Oscillation during the last half millennium. <i>Quaternary Science Reviews</i>, <b>108</b> , pp. 23-36. <a href="http://dx.doi.org/10.1016/j.quascirev.2014.11.005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Saupe EE; Qiao H; Hendricks JR; Portell RW; Hunter SJ; Soberón J; Lieberman BS (2015) Niche breadth and geographic range size as determinants of species survival on geological time scales. <i>Global Ecology and Biogeography</i>, <b>24</b> (10), pp. 1159-1169. <a href="http://dx.doi.org/10.1111/geb.12333"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Schwarm A; Schweigel-Röntgen M; Kreuzer M; Ortmann S; Gill F; Kuhla B; Meyer U; Lohölter M; Derno M (2015) Methane emission, digestive characteristics and faecal archaeol in heifers fed diets based on silage from brown midrib maize as compared to conventional maize. <i>Archives of Animal Nutrition</i>, <b>69</b> (3), pp. 159-176. <a href="http://dx.doi.org/10.1080/1745039X.2015.1043211"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/87335/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Song H; Wignall PB; Tong J; Song H; Chen J; Chu D; Tian L; Luo M; Zong K; Chen Y (2015) Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic. <i>Earth and Planetary Science Letters</i>, <b>424</b> , pp. 140-147. <a href="http://dx.doi.org/10.1016/j.epsl.2015.05.035"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90240/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Stüeken EE; Buick R; Bekker A; Catling D; Foriel J; Guy BM; Kah LC; Machel HG; Montañez IP; Poulton SW (2015) The evolution of the global selenium cycle: Secular trends in Se isotopes and abundances. <i>Geochimica et Cosmochimica Acta</i>, <b>162</b> , pp. 109-125. <a href="http://dx.doi.org/10.1016/j.gca.2015.04.033"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/86400/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Sun YD; Wignall PB; Joachimski MM; Bond DPG; Grasby SE; Sun S; Yan CB; Wang LN; Chen YL; Lai XL (2015) High amplitude redox changes in the late Early Triassic of South China and the Smithian-Spathian extinction. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>427</b> , pp. 62-78. <a href="http://dx.doi.org/10.1016/j.palaeo.2015.03.038"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/87200/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Sun Z; Li J; Huang W; Dong H; Little CTS; Li J (2015) Generation of hydrothermal Fe-Si oxyhydroxide deposit on the Southwest Indian Ridge and its implication for the origin of ancient banded iron formations. <i>Journal of Geophysical Research: Biogeosciences</i>, <b>120</b> (1), pp. 187-203. <a href="http://dx.doi.org/10.1002/2014JG002764"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/83794/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Tindall JC; Haywood AM (2015) Modeling oxygen isotopes in the Pliocene: Large-scale features over the land and ocean. <i>Paleoceanography</i>, <b>30</b> (9), pp. 1183-1201. <a href="http://dx.doi.org/10.1002/2014PA002774"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90277/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wang M; Zheng X; O’Connor JK; Lloyd GT; Wang X; Wang Y; Zhang X; Zhou Z (2015) The oldest record of ornithuromorpha from the early cretaceous of China. <i>Nature Communications</i>, <b>6</b> (1). <a href="http://dx.doi.org/10.1038/ncomms7987"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Witts JD; Bowman VC; Wignall PB; Alistair Crame J; Francis JE; Newton RJ (2015) Evolution and extinction of Maastrichtian (Late Cretaceous) cephalopods from the López de Bertodano Formation, Seymour Island, Antarctica. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>418</b> , pp. 193-212. <a href="http://dx.doi.org/10.1016/j.palaeo.2014.11.002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/84974/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wood RA; Poulton SW; Prave AR; Hoffmann K-H; Clarkson MO; Guilbaud R; Lyne JW; Tostevin R; Bowyer F; Penny AM (2015) Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia. <i>Precambrian Research</i>, <b>261</b> , pp. 252-271. <a href="http://dx.doi.org/10.1016/j.precamres.2015.02.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/84669/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Barlow N; Koehler R (2015) <i>Seismic and non-seismic influences on coastal change in Alaska - Fieldtrip guide and conference abstracts, 5th International Conference of IGCP 588</i> Fairbanks, Alaska, .

2014

Bond DPG; Wignall PB (2014) <i>Large igneous provinces and mass extinctions: An update</i>. 505, . <a href="http://dx.doi.org/10.1130/2014.2505(02)"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
White T; Roe H; Preece R; Devoy R; Barlow N (2014) The Cudmore Grove Channel. <i>In:</i> Bridgland D; Allen P; White T eds. <i>The Quaternary of the Lower Thames and Eastern Essex</i>, Quaternary Research Association, pp. 112-122.
Johnson KL; Peacock CL; Gray ND; Purvis GW; Lopez-Capel E (2014) <i>Stabilisation and fractionation of carbon in manganese oxides</i> Abstracts of Papers of the American Chemical Society, 171. <a href="http://eprints.whiterose.ac.uk/85777/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Peacock CL; Atkins A; Shaw S (2014) <i>Formation of todorokite in marine sediments: Mechanism, pathway and fate of bio-essential elements</i> Abstracts of Papers of the American Chemical Society, 118. <a href="http://eprints.whiterose.ac.uk/85776/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Alexanderson H; Backman J; Cronin TM; Funder S; Ingólfsson Ó; Jakobsson M; Landvik JY; Löwemark L; Mangerud J; März C (2014) An Arctic perspective on dating Mid-Late Pleistocene environmental history. <i>Quaternary Science Reviews</i>, <b>92</b> , pp. 9-31. <a href="http://dx.doi.org/10.1016/j.quascirev.2013.09.023"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Amano K; Little CTS (2014) Miocene abyssochrysoid gastropod Provanna from Japanese seep and whale-fall sites. <i>Acta Palaeontologica Polonica</i>, <b>59</b> (1), pp. 163-172. <a href="http://dx.doi.org/10.4202/app.2012.0002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/78196/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Amano K; Saether KP; Little CTS; Campbell KA (2014) Fossil vesicomyid bivalves from Miocene hydrocarbon seep sites, North Island, New Zealand. <i>Acta Palaeontologica Polonica</i>, <b>59</b> (2), pp. 421-428. <a href="http://dx.doi.org/10.4202/app.2012.0070"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80955/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Atkins AL; Shaw S; Peacock CL (2014) Nucleation and growth of todorokite from birnessite: Implications for trace-metal cycling in marine sediments. <i>Geochimica et Cosmochimica Acta</i>, <b>144</b> , pp. 109-125. <a href="http://dx.doi.org/10.1016/j.gca.2014.08.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/81100/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Aze T; Barry J; Bellerby RGJ; Brander L; Byrne M; Dupont S; Gattuso J-P; Gibbs S; Hansson L; Hattam C (2014) An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity. <i>CBD Technical Series</i>, <b>75</b> .
Aze T; Pearson PN; Dickson AJ; Badger MPS; Bown PR; Pancost RD; Gibbs SJ; Huber BT; Leng MJ; Coe AL (2014) Extreme warming of tropical waters during the Paleocene–Eocene Thermal Maximum. <i>Geology</i>, <b>42</b> , pp. 739-742. <a href="http://dx.doi.org/10.1130/G35637.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/114568/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Barlow N; Long A; Saher M; Gehrels W; Garnett M; Scaife R (2014) Salt-marsh reconstructions of relative sea-level change in the North Atlantic during the last 2000 years. <i>Quaternary Science Reviews</i>, <b>99</b> , pp. 1-16. <a href="http://dx.doi.org/10.1016/j.quascirev.2014.06.008"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bradshaw CD; Lunt DJ; Flecker R; Salzmann U; Pound MJ; Haywood AM; Eronen JT (2014) The relative roles of CO2 and palaeogeography in determining late Miocene climate: results from a terrestrial model-data comparison (vol 8, pg 1257, 2012). <i>CLIMATE OF THE PAST</i>, <b>10</b> (1), pp. 199-206. <a href="http://dx.doi.org/10.5194/cp-10-199-2014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80156/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Brusatte S; Lloyd G; Wang S; Norell M (2014) Gradual Assembly of Avian Body Plan Culminated in Rapid Rates of Evolution across the Dinosaur-Bird Transition. <i>Current Biology</i>, <b>24</b> (20), pp. 2386-2392. <a href="http://dx.doi.org/10.1016/j.cub.2014.08.034"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Clarkson MO; Poulton SW; Guilbaud R; Wood RA (2014) Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments. <i>Chemical Geology</i>, <b>382</b> , pp. 111-122. <a href="http://dx.doi.org/10.1016/j.chemgeo.2014.05.031"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82687/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Cook CP; Van De Flierdt T; Hill DJ; Dolan AM; Williams T; Hemming SR; Pierce EL; Escutia C; Gonzales JJ; Harwood D (2014) Sea surface temperature control on the distribution of far-traveled Southern Ocean ice-rafted detritus during the Pliocene. <i>Paleoceanography</i>, <b>29</b> (6), pp. 533-548. <a href="http://dx.doi.org/10.1002/2014PA002625"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80164/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Corso JD; Marzoli A; Tateo F; Jenkyns HC; Bertrand H; Youbi N; Mahmoudi A; Font E; Buratti N; Cirilli S (2014) The dawn of CAMP volcanism and its bearing on the end-Triassic carbon cycle disruption. <i>Journal of the Geological Society</i>, <b>171</b> (2), pp. 153-164. <a href="http://dx.doi.org/10.1144/jgs2013-063"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Creveling JR; Johnston DT; Poulton SW; Kotrc B; Maerz C; Schrag DP; Knoll AH (2014) Phosphorus sources for phosphatic Cambrian carbonates. <i>Geological Society of America Bulletin</i>, <b>126</b> (1-2), pp. 145-163. <a href="http://dx.doi.org/10.1130/B30819.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82688/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dickson AJ; Rees-Owen RL; März C; Coe AL; Cohen AS; Pancost RD; Taylor K; Shcherbinina E (2014) The spread of marine anoxia on the northern Tethys margin during the Paleocene-Eocene Thermal Maximum. <i>Paleoceanography</i>, <b>29</b> (6), pp. 471-488. <a href="http://dx.doi.org/10.1002/2014PA002629"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dunhill AM; Benton MJ; Twitchett RJ; Newell AJ (2014) Testing the fossil record: Sampling proxies and scaling in the British Triassic–Jurassic. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>404</b> , pp. 1-11. <a href="http://dx.doi.org/10.1016/j.palaeo.2014.03.026"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90721/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dunhill AM; Hannisdal B; Benton MJ (2014) Disentangling rock record bias and common-cause from redundancy in the British fossil record. <i>Nature Communications</i>, <b>5</b> , 4818. <a href="http://dx.doi.org/10.1038/ncomms5818"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90720/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Fletcher T; Altringham J; Peakall J; Wignall P; Dorrell R (2014) Hydrodynamics of fossil fishes. <i>Proceedings of the Royal Society of London. Series B</i>, <b>281</b> (1788), 20140703. <a href="http://dx.doi.org/10.1098/rspb.2014.0703"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80600/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Franceschi M; Dal Corso J; Posenato R; Roghi G; Masetti D; Jenkyns HC (2014) Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>410</b> , pp. 255-263. <a href="http://dx.doi.org/10.1016/j.palaeo.2014.05.025"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Fuller AJ; Shaw S; Peacock CL; Trivedi D; Small JS; Abrahamsen LG; Burke IT (2014) Ionic strength and pH dependent multi-site sorption of 137Cs onto a micaceous aquifer sediment. <i>Applied Geochemistry</i>, <b>40</b> , pp. 32-42. <a href="http://dx.doi.org/10.1016/j.apgeochem.2013.10.017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80294/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Goldobin DS; Brilliantov NV; Levesley J; Lovell MA; Rochelle CA; Jackson PD; Haywood AM; Hunter SJ; Rees JG (2014) Non-Fickian diffusion and the accumulation of methane bubbles in deep-water sediments. <i>European Physical Journal E</i>, <b>37</b> (5). <a href="http://dx.doi.org/10.1140/epje/i2014-14045-x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80313/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gravendeel B; Protopopov A; Bull I; Duijm E; Gill F; Nieman A; Rudaya N; Tikhonov AN; Trofimova S; van Reenen GBA (2014) Multiproxy study of the last meal of a mid-Holocene Oyogos Yar horse, Sakha Republic, Russia. <i>The Holocene</i>, <b>24</b> (10), pp. 1288-1296. <a href="http://dx.doi.org/10.1177/0959683614540953"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/87336/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Higgs ND; Glover AG; Dahlgren TG; Smith CR; Fujiwara Y; Pradillion F; Johnson SB; Vrijenhoek RC; Little CTS (2014) The morphological diversity of Osedax worm borings (Annelidia: Siboglinidae). <i>Journal of the Marine Biological Association of the United Kingdom</i>, <b>94</b> (7), pp. 1429-1439. <a href="http://dx.doi.org/10.1017/S0025315414000770"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82860/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hill DJ; Haywood AM; Lunt DJ; Hunter SJ; Bragg FJ; Contoux C; Stepanek C; Sohl L; Rosenbloom NA; Chan WL (2014) Evaluating the dominant components of warming in Pliocene climate simulations. <i>Climate of the Past</i>, <b>10</b> (1), pp. 79-90. <a href="http://dx.doi.org/10.5194/cp-10-79-2014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80157/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Howell FW; Haywood AM; Dolan AM; Dowsett HJ; Francis JE; Hill DJ; Pickering SJ; Pope JO; Salzmann U; Wade BS (2014) Can uncertainties in sea ice albedo reconcile patterns of data-model discord for the Pliocene and 20th/21st centuries?. <i>Geophysical Research Letters</i>, <b>41</b> (6), pp. 2011-2018. <a href="http://dx.doi.org/10.1002/2013GL058872"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80158/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hryniewicz K; Little CTS; Nakrem HA (2014) Bivalves from the latest Jurassic-earliest Cretaceous hydrocarbon seep carbonates from central Spitsbergen, Svalbard. <i>Zootaxa</i>, <b>3859</b> (1), pp. 1-66. <a href="http://dx.doi.org/10.11646/zootaxa.3859.1.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82701/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Husdon-Edwards KA; Bristow CS; Cibin G; Mason G; Peacock CL (2014) Solid-phase phosphorus speciation in Saharan Bodele Depression dusts and source sediments. <i>Chemical Geology</i>, <b>384</b> , pp. 16-26. <a href="http://dx.doi.org/10.1016/j.chemgeo.2014.06.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80012/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic RF; Valdes PJ; Flecker R; Gutjahr M (2014) Modelling global-scale climate impacts of the late Miocene Messinian Salinity Crisis. <i>Climate of the Past</i>, <b>10</b> (2), pp. 607-622. <a href="http://dx.doi.org/10.5194/cp-10-607-2014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80166/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic RF; Valdes PJ; Gregoire LJ; Flecker R; Gutjahr M (2014) Sensitivity of modern climate to the presence, strength and salinity of Mediterranean-Atlantic exchange in a global General Circulation Model. <i>Climate Dynamics: observational, theoretical and computational research on the climate system</i>, <b>42</b> (3-4), pp. 859-877. <a href="http://dx.doi.org/10.1007/s00382-013-1680-5"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80225/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Jiang H; Lai X; Sun Y; Wignall PB; Liu J; Yan C (2014) Permian-Triassic conodonts from Dajiang (Guizhou, South China) and their implication for the age of microbialite deposition in the aftermath of the End-Permian mass extinction. <i>Journal of Earth Science</i>, <b>25</b> (3), pp. 413-430. <a href="http://dx.doi.org/10.1007/s12583-014-0444-4"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/81185/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Lenton TM; Boyle RA; Poulton SW; Shields-Zhou GA; Butterfield NJ (2014) Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. <i>Nature Geoscience</i>, <b>7</b> (4), pp. 257-265. <a href="http://dx.doi.org/10.1038/ngeo2108"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80329/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Lockwood CL; Mortimer RJG; Stewart DI; Mayes WM; Peacock CL; Polya DA; Lythgoe PR; Lehoux AP; Gruiz K; Burke IT (2014) Mobilisation of arsenic from bauxite residue (red mud) affected soils: effect of pH and redox conditions. <i>Applied Geochemistry</i>, <b>51</b> , pp. 268-277. <a href="http://dx.doi.org/10.1016/j.apgeochem.2014.10.009"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82355/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Long A; Barlow N; Gehrels W; Saher M; Woodworth P; Scaife R; Brain M; Cahill N (2014) Contrasting records of sea-level change in the eastern and western North Atlantic during the last 300 years. <i>Earth and Planetary Science Letters</i>, <b>388</b> , pp. 110-122. <a href="http://dx.doi.org/10.1016/j.epsl.2013.11.012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lucey JM; Tawatao N; Senior MJM; Chey VK; Benedick S; Hamer KC; Woodcock P; Newton RJ; Bottrell SH; Hill JK (2014) Tropical forest fragments contribute to species richness in adjacent oil palm plantations. <i>Biological Conservation</i>, <b>169</b> , pp. 268-276. <a href="http://dx.doi.org/10.1016/j.biocon.2013.11.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80197/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Löwemark L; März C; O'Regan M; Gyllencreutz R (2014) Arctic Ocean Mn-stratigraphy: genesis, synthesis and inter-basin correlation. <i>Quaternary Science Reviews</i>, <b>92</b> , pp. 97-111. <a href="http://dx.doi.org/10.1016/j.quascirev.2013.11.018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Matamoros-Veloza A; Peacock CL; Benning LG (2014) Selenium speciation in framboidal and euhedral pyrites in shales. <i>Environmental Science and Technology</i>, <b>48</b> (16), pp. 8972-8979. <a href="http://dx.doi.org/10.1021/es405686q"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/86587/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Meier DB; Gunnlaugsson E; Gunnarsson I; Jamtveit B; Peacock CL; Benning LG (2014) Microstructural and chemical variation in silica rich precipitates at the Hellisheidi geothermal power plant. <i>Mineralogical Magazine</i>, <b>78</b> (6), pp. 1381-1389. <a href="http://dx.doi.org/10.1180/minmag.2014.078.6.04"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/85779/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Meinhardt A-K; März C; Stein R; Brumsack H-J (2014) Regional variations in sediment geochemistry on a transect across the Mendeleev Ridge (Arctic Ocean). <i>Chemical Geology</i>, <b>369</b> , pp. 1-11. <a href="http://dx.doi.org/10.1016/j.chemgeo.2014.01.011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Metodiev L; Savov IP; Grocke D; Wignall P; Newton R; Andreeva P; Koleva-Rekavola E (2014) Palaeoenvironmental conditions recorded by 87Sr/86Sr, d13C and d18O in Late Pliensbachian-Toarcian (Jurassic) belemnites from Bulgaria. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>409</b> , pp. 98-113. <a href="http://dx.doi.org/10.1016/j.palaeo.2014.04.025"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82680/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Mills B; Lenton TM; Watson AJ (2014) Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering. <i>Proceedings of the National Academy of Sciences</i>, <b>111</b> (25). <a href="http://dx.doi.org/10.1073/pnas.1321679111"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90315/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Mills BJW; Daines SJ; Lenton TM (2014) Changing tectonic controls on the long-term carbon cycle from Mesozoic to present. <i>Geochemistry, Geophysics, Geosystems</i>, <b>15</b> (12), pp. 4866-4884. <a href="http://dx.doi.org/10.1002/2014GC005530"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90316/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
März C; Poulton SW; Wagner T; Schnetger B; Brumsack H-J (2014) Phosphorus burial and diagenesis in the central Bering Sea (Bowers Ridge, IODP Site U1341): Perspectives on the marine P cycle. <i>Chemical Geology</i>, <b>363</b> , pp. 270-282. <a href="http://dx.doi.org/10.1016/j.chemgeo.2013.11.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80330/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
O'Reilly SS; Hryniewicz K; Little CTS; Monteys X; Szpak MT; Murphy BT; Jordan SF; Allen CCR; Kelleher BP (2014) Shallow water methane-derived authigenic carbonate mounds at the Codling Fault Zone, western Irish Sea. <i>Marine Geology</i>, <b>357</b> , pp. 139-150. <a href="http://dx.doi.org/10.1016/j.margeo.2014.08.007"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82704/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Pogge Von Strandmann PAE; Coath CD; Catling DC; Poulton SW; Elliott T (2014) Analysis of mass dependent and mass independent selenium isotope variability in black shales. <i>Journal of Analytical Atomic Spectrometry</i>, <b>29</b> (9), pp. 1648-1659. <a href="http://dx.doi.org/10.1039/c4ja00124a"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82686/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Pound MJ; Tindall J; Pickering SJ; Haywood AM; Dowsett HJ; Salzmann U (2014) Late Pliocene lakes and soils: a global data set for the analysis of climate feedbacks in a warmer world. <i>Climate of the Past</i>, <b>10</b> (1), pp. 167-180. <a href="http://dx.doi.org/10.5194/cp-10-167-2014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80024/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Prescott CL; Haywood AM; Dolan AM; Hunter SJ; Pope JO; Pickering SJ (2014) Assessing orbitally-forced interglacial climate variability during the mid-Pliocene Warm Period. <i>Earth and Planetary Science Letters</i>, <b>400</b> , pp. 261-271. <a href="http://dx.doi.org/10.1016/j.epsl.2014.05.030"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80067/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Rabizadeh T; Peacock CL; Benning LG (2014) Carboxylic acids: Effective inhibitors for calcium sulphate precipitation?. <i>Mineralogical Magazine</i>, <b>78</b> (6), pp. 1465-1472. <a href="http://dx.doi.org/10.1180/minmag.2014.078.6.13"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/86488/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Rush D; Sinninghe Damsté JS; Poulton SW; Thamdrup B; Garside AL; Acuña González J; Schouten S; Jetten MSM; Talbot HM (2014) Anaerobic ammonium-oxidising bacteria: A biological source of the bacteriohopanetetrol stereoisomer in marine sediments. <i>Geochimica et Cosmochimica Acta</i>, <b>140</b> , pp. 50-64. <a href="http://dx.doi.org/10.1016/j.gca.2014.05.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82685/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Römer M; Torres M; Kasten S; Kuhn G; Graham AGC; Mau S; Little CTS; Linse K; Pape T; Geprägs P (2014) First evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia. <i>Earth and Planetary Science Letters</i>, <b>403</b> , pp. 166-177. <a href="http://dx.doi.org/10.1016/j.epsl.2014.06.036"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82703/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Sandy MR; Hryniewicz K; Hammer Ø; Nakrem HA; Little CTS (2014) Brachiopods from Late Jurassic-Early Cretaceous hydrocarbon seep deposits, central Spitsbergen, Svalbard. <i>Zootaxa</i>, <b>3884</b> (6), pp. 501-532. <a href="http://dx.doi.org/10.11646/zootaxa.3884.6.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/81808/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Saupe EE; Hendricks JR; Portell RW; Dowsett HJ; Haywood A; Hunter SJ; Lieberman BS (2014) Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. <i>Proceedings of the Royal Society B: Biological Sciences</i>, <b>281</b> (1795). <a href="http://dx.doi.org/10.1098/rspb.2014.1995"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82681/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Shennan I; Barlow N; Carver G; Davies F; Garrett E; Hocking E (2014) Great tsunamigenic earthquakes during the last 1000 years on the Alaska megathrust. <i>Geology</i>, <b>42</b> (8), pp. 687-690. <a href="http://dx.doi.org/10.1130/G35797.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shennan I; Barlow N; Combellick R; Pierre K; Stuart Taylor O (2014) Late Holocene paleoseismology of a site in the region of maximum submergence during the 1964 Mw 9.2 Alaska earthquake. <i>Journal of Quaternary Science</i>, <b>29</b> (4), pp. 343-350. <a href="http://dx.doi.org/10.1002/jqs.2705"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shennan I; Bruhn R; Barlow N; Good K; Hocking E (2014) Late Holocene great earthquakes in the eastern part of the Aleutian megathrust. <i>Quaternary Science Reviews</i>, <b>84</b> , pp. 86-97. <a href="http://dx.doi.org/10.1016/j.quascirev.2013.11.010"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Song H; Wignall PB; Chu D; Tong J; Sun Y; Song H; He W; Tian L (2014) Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. <i>Scientific Reports</i>, <b>4</b> , 4132. <a href="http://dx.doi.org/10.1038/srep04132"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80219/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Van Geel B; Protopopov A; Bull I; Duijm E; Gill F; Lammers Y; Nieman A; Rudaya N; Trofimova S; Tikhonov AN (2014) Multiproxy diet analysis of the last meal of an early Holocene Yakutian bison. <i>Journal of Quaternary Science</i>, <b>29</b> (3), pp. 261-268. <a href="http://dx.doi.org/10.1002/jqs.2698"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80094/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Vinn O; Hryniewicz K; Little CTS; Nakrem HA (2014) A Boreal serpulid fauna from Volgian-Ryazanian (latest Jurassic-earliest Cretaceous) shelf sediments and hydrocarbon seeps from Svalbard. <i>Geodiversitas</i>, <b>36</b> (4), pp. 527-540. <a href="http://dx.doi.org/10.5252/g2014n4a2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/82702/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Youbi N; Marzoli A; Bertrand H; Font E; Dal Corso J; Martins L; Madeira J; Mata J; Bellieni G; Callegaro S (2014) Assessing the causes of the end-triassic biotic crisis, a review. <i>Comunicacoes Geologicas</i>, <b>101</b> (Special Issue 3), pp. 1473-1476.
Shennan I; Barlow N; Garrett E (2014) <i>Late Holocene paleoseismology of the Kenai Peninsula and Kachemak Bay region, Alaska and implications for plate segmentation</i> USGS National Earthquake Hazards Reduction Program (NEHRP) report.

2013

Dunkley-Jones T; Ivanovic RF; Ridgwell A; Lunt D; Maslin M; Valdes PJ; Flecker R (2013) Methane Hydrate Instability: A View from the Palaeogene. <i>In:</i> McGuire B; Maslin M eds. <i>Climate Forcing of Geological Hazards</i>, Chichester, West Sussex, UK: Wiley-Blackwell, pp. 278-304. <a href="http://dx.doi.org/10.1002/9781118482698.ch12"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Algeo TJ; Fraiser ML; Wignall PB; Winguth AME (2013) Permian-Triassic paleoceanography. <i>Global and Planetary Change</i>, <b>105</b> , pp. 1-6. <a href="http://dx.doi.org/10.1016/j.gloplacha.2013.03.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Aze T; Ezard THG; Purvis A; Coxall HK; Stewart DRM; Wade BS; Pearson PN (2013) Identifying anagenesis and cladogenesis in the fossil record. <i>Proceedings of the National Academy of Sciences USA</i>, <b>110</b> .
Barlow N; Shennan I; Long A; Gehrels W; Saher M; Woodroffe S; Hillier C (2013) Salt marshes as late Holocene tide gauges. <i>Global and Planetary Change</i>, <b>106</b> , pp. 90-110. <a href="http://dx.doi.org/10.1016/j.gloplacha.2013.03.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Benton MJ; Ruta M; Dunhill AM; Sakamoto M (2013) The first half of tetrapod evolution, sampling proxies, and fossil record quality. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>372</b> , pp. 18-41. <a href="http://dx.doi.org/10.1016/j.palaeo.2012.09.005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bond DPG; Zatoń M; Marynowski L; Wignall PB (2013) Evidence for shallow-water 'Upper Kellwasser' anoxia in the Frasnian-Famennian reefs of Alberta, Canada. <i>Lethaia</i>, . <a href="http://dx.doi.org/10.1111/let.12014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Boyle RA; Clark JR; Poulton SW; Shields-Zhou G; Canfield DE; Lenton TM (2013) Nitrogen cycle feedbacks as a control on euxinia in the mid-Proterozoic ocean. <i>Nature Communications</i>, <b>4</b> , pp. 1533. <a href="http://dx.doi.org/10.1038/ncomms2511"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Burke IT; Peacock CL; Lockwood CL; Stewart D; Mortimer R; Ward MB; Renforth P; Gruiz K; Mayes WM (2013) Behavior of aluminium, arsenic and vanadium during the neutralization of red mud leachate by HCl, gypsum or seawater. <i>Environmental Science and Technology</i>, <b>47</b> (12), pp. 6527-6535. <a href="http://dx.doi.org/10.1021/es4010834"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/78584/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Clark NA; Williams M; Hill DJ; Quilty PG; Smellie JL; Zalasiewicz J; Leng MJ; Ellis MA (2013) Fossil proxies of near-shore sea surface temperatures and seasonality from the late Neogene Antarctic shelf. <i>Naturwissenschaften</i>, <b>100</b> (8), pp. 699-722. <a href="http://dx.doi.org/10.1007/s00114-013-1075-9"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80195/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Couce E; Irvine PJ; Gregorie LJ; Ridgwell A; Hendy EJ (2013) Tropical coral reef habitat in a geoengineered, high-CO2 world. <i>Geophysical Research Letters</i>, <b>40</b> (9), pp. 1799-1804. <a href="http://dx.doi.org/10.1002/grl.50340"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Cumming VM; Poulton SW; Rooney AD; Selby D (2013) Anoxia in the terrestrial environment during the late Mesoproterozoic. <i>Geology</i>, <b>41</b> (5), pp. 583-586. <a href="http://dx.doi.org/10.1130/G34299.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/83396/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dal Corso J; Roghi G; Ragazzi E; Angelini I; Giaretta A; Soriano C; Delclos X; Jenkyns HC (2013) Physico-chemical analysis of Albian (Lower Cretaceous) amber from San Just (Spain): implications for palaeoenvironmental and palaeoecological studies. <i>GEOLOGICA ACTA</i>, <b>11</b> (3), pp. 359-370. <a href="http://dx.doi.org/10.1344/105.000001871"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Danise S; Twitchett RJ; Little CTS; Clemence ME (2013) The Impact of Global Warming and Anoxia on Marine Benthic Community Dynamics: an Example from the Toarcian (Early Jurassic). <i>PLoS One</i>, <b>8</b> (2), pp. 1-14. <a href="http://dx.doi.org/10.1371/journal.pone.0056255"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76703/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dowsett HJ; Foley KM; Stoll DK; Chandler MA; Sohl LE; Bentsen M; Otto-Bliesner BL; Bragg FJ; Chan W-L; Contoux C (2013) Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison. <i>Scientific Reports</i>, <b>3</b> , 2013. <a href="http://dx.doi.org/10.1038/srep02013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/95857/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Dunhill AM; Benton MJ; Newell AJ; Twitchett RJ (2013) Completeness of the fossil record and the validity of sampling proxies: a case study from the Triassic of England and Wales. <i>Journal of the Geological Society</i>, <b>170</b> , pp. 291-300. <a href="http://dx.doi.org/10.1144/jgs2012-025"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dustira AM; Wignall PB; Bond DPG; Joachimski M; Blomeier D; Hartkopf-Fröder C (2013) Gradual onset of anoxia across the Permian-Triassic Boundary in Svalbard, Norway. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, . <a href="http://dx.doi.org/10.1016/j.palaeo.2013.02.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dustira AM; Wignall PB; Joachimski M; Blomeier D; Hartkopf-Fröder C; Bond DPG (2013) Gradual onset of anoxia across the Permian-Triassic Boundary in Svalbard, Norway. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>374</b> , pp. 303-313. <a href="http://dx.doi.org/10.1016/j.palaeo.2013.02.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Eckert S; Brumsack H-J; Severmann S; Schnetger B; März C; Fröllje H (2013) Establishment of euxinic conditions in the Holocene Black Sea. <i>Geology</i>, <b>41</b> (4), pp. 431-434. <a href="http://dx.doi.org/10.1130/G33826.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Edwards DP; Woodcock P; Newton RJ; Edwards FA; Andrews DJR; Docherty TDS; Mitchell SL; Ota T; Benedick S; Bottrell SH (2013) Trophic flexibility and the persistence of understory birds in intensively logged rainforest. <i>Conserv Biol</i>, <b>27</b> (5), pp. 1079-1086. <a href="http://dx.doi.org/10.1111/cobi.12059"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/87087/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Eyong JT; Wignall P; Fantong WY; Best J; Hell JV (2013) Paragenetic sequences of carbonate and sulphide minerals of the Mamfe Basin (Cameroon): Indicators of palaeo-fluids, palaeo-oxygen levels and diagenetic zones. <i>Journal of African Earth Sciences</i>, <b>86</b> , pp. 25-44. <a href="http://dx.doi.org/10.1016/j.jafrearsci.2013.05.002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Farquhar J; Cliff J; Zerkle AL; Kamyshny A; Poulton SW; Claire M; Adams D; Harms B (2013) Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes. <i>Proc Natl Acad Sci U S A</i>, <b>110</b> (44), pp. 17638-17643. <a href="http://dx.doi.org/10.1073/pnas.1218851110"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Galan-Abellan B; Alonso-Azcarate J; Newton RJ; Bottrell SH; Barrenechea JF; Benito MI; De la Horra R; Lopez-Gomez J; Luque J (2013) SOURCES OF Sr AND S IN ALUMINUM-PHOSPHATE-SULFATE MINERALS IN EARLY-MIDDLE TRIASSIC SANDSTONES (IBERIAN RANGES, SPAIN) AND PALEOENVIRONMENTAL IMPLICATIONS FOR THE WEST TETHYS. <i>JOURNAL OF SEDIMENTARY RESEARCH</i>, <b>83</b> (5-6), pp. 406-426. <a href="http://dx.doi.org/10.2110/jsr.2013.33"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Geboy NJ; Kaufman AJ; Walker RJ; Misi A; de Oliviera TF; Miller KE; Azmy K; Kendall B; Poulton SW (2013) Re-Os age constraints and new observations of Proterozoic glacial deposits in the Vazante Group, Brazil. <i>Precambrian Research</i>, <b>238</b> , pp. 199-213. <a href="http://dx.doi.org/10.1016/j.precamres.2013.10.010"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80332/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gill FL; Little CTS (2013) A new genus of lucinid bivalve from hydrocarbon seeps. <i>Acta Palaeontologica Polonica</i>, <b>58</b> (3), pp. 573-578. <a href="http://dx.doi.org/10.4202/app.2011.0092"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76702/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Godfrey LV; Poulton SW; Bebout GE; Fralick PW (2013) Stability of the nitrogen cycle during development of sulfidic water in the redox-stratified late Paleoproterozoic Ocean. <i>Geology</i>, <b>41</b> (6), pp. 655-658. <a href="http://dx.doi.org/10.1130/G33930.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/83397/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Guilbaud R; White ML; Poulton SW (2013) Surface charge and growth of sulphate and carbonate green rust in aqueous media. <i>Geochimica et Cosmochimica Acta</i>, <b>108</b> , pp. 141-153.
Haywood AM; Dolan AM; Pickering SJ; Dowsett HJ; McClymont EL; Prescott CL; Salzmann U; Hill DJ; Hunter SJ; Lunt DJ (2013) On the identification of a Pliocene time slice for data-model comparison. <i>Philos Trans A Math Phys Eng Sci</i>, <b>371</b> (2001), pp. 20120515. <a href="http://dx.doi.org/10.1098/rsta.2012.0515"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80315/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Haywood AM; Hill DJ; Dolan AM; Otto-Bliesner BL; Bragg F; Chan WL; Chandler MA; Contoux C; Dowsett HJ; Jost A (2013) Large-scale features of Pliocene climate: Results from the Pliocene Model Intercomparison Project. <i>Climate of the Past</i>, <b>9</b> (1), pp. 191-209. <a href="http://dx.doi.org/10.5194/cp-9-191-2013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/141628/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
He T; Ling H; Chen Y; Li D; Yang A; Wang D; Wu H (2013) Geochemical Characteristics and Origin of Ediacaran Piyuancun Chert in the Lantian Section, Xiuning, Southern Anhui Province. <i>Geological Journal of China Universities (English)</i>, <b>19</b> (4), pp. 620-633.
Hesselbo SP; Bjerrum CJ; Hinnov LA; MacNiocaill C; Miller KG; Riding JB; van de Schootbrugge B; Mochras Revisited Science Team; Little CTS (2013) Mochras borehole revisited: a new global standard for Early Jurassic earth history. <i>Scientific Drilling</i>, <b>16</b> , pp. 81-91. <a href="http://dx.doi.org/10.5194/sd-16-81-2013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/94693/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hill DJ; Haywood AM; Valdes PJ; Francis JE; Lunt DJ; Wade BS; Bowman VC (2013) Paleogeographic controls on the onset of the Antarctic circumpolar current. <i>Geophysical Research Letters</i>, <b>40</b> (19), pp. 5199-5204. <a href="http://dx.doi.org/10.1002/grl.50941"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80159/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hunter SJ; Goldobin DS; Haywood AM; Ridgwell A; Rees JG (2013) Sensitivity of the global submarine hydrate inventory to scenarios of future climate change. <i>Earth and Planetary Science Letters</i>, <b>367</b> , pp. 105-115. <a href="http://dx.doi.org/10.1016/j.epsl.2013.02.017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hunter SJ; Goldobin DS; Haywood AM; Ridgwell A; Rees JG (2013) Erratum to "Sensitivity of the global submarine Hydrate inventory to scenarios of future climate change". <i>Earth and Planetary Science Letters</i>, <b>375</b> , pp. 450. <a href="http://dx.doi.org/10.1016/j.epsl.2013.07.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hunter SJ; Haywood AM; Goldobin DS; Ridgwell A; Rees JG (2013) Erratum to "Sensitivity of the global submarine Hydrate inventory to scenarios of future climate change" (DOI:10.1016/j.epsl.2013.02.017). <i>Earth and Planetary Science Letters</i>, . <a href="http://dx.doi.org/10.1016/j.epsl.2013.07.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hunter SJ; Haywood AM; Valdes PJ; Francis JE; Pound MJ (2013) Modelling equable climates of the Late Cretaceous: Can new boundary conditions resolve data-model discrepancies?. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>392</b> , pp. 41-51. <a href="http://dx.doi.org/10.1016/j.palaeo.2013.08.009"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80053/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Irvine PJ; Gregoire LJ; Lunt DJ; Valdes PJ (2013) An efficient method to generate a perturbed parameter ensemble of a fully coupled AOGCM without flux-adjustment. <i>Geoscientific Model Development</i>, <b>6</b> (5), pp. 1447-1462. <a href="http://dx.doi.org/10.5194/gmd-6-1447-2013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Ivanovic RF; Flecker R; Gutjahr M; Valdes PJ (2013) First Nd isotope record of Mediterranean–Atlantic water exchange through the Moroccan Rifian Corridor during the Messinian Salinity Crisis. <i>Earth and Planetary Science Letters</i>, <b>368</b> , pp. 163-174. <a href="http://dx.doi.org/10.1016/j.epsl.2013.03.010"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/89969/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Ivanovic RF; Valdes PJ; Flecker R; Gregoire LJ; Gutjahr M (2013) The parameterisation of Mediterranean–Atlantic water exchange in the Hadley Centre model HadCM3, and its effect on modelled North Atlantic climate. <i>Ocean Modelling</i>, <b>62</b> , pp. 11-16. <a href="http://dx.doi.org/10.1016/j.ocemod.2012.11.002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/89970/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Jenkins RG; Kaim A; Little CTS; Iba Y; Tanabe K; Campbell KA (2013) Worldwide distribution of modiomorphid bivalve genus Caspiconcha in late Mesozoic hydrocarbon seeps. <i>Acta Palaeontologica Polonica</i>, <b>58</b> (2), pp. 357-382. <a href="http://dx.doi.org/10.4202/app.2011.0026"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76704/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Johnston DT; Poulton SW; Tosca NJ; O'Brien T; Halverson GP; Schrag DP; Macdonald FA (2013) Searching for an oxygenation event in the fossiliferous Ediacaran of northwestern Canada. <i>Chemical Geology</i>, <b>362</b> , pp. 273-286. <a href="http://dx.doi.org/10.1016/j.chemgeo.2013.08.046"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80331/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Levinsky I; Araujo MB; Nogues-Bravo D; Haywood AM; Valdes PJ; Rahbek C (2013) Climate envelope models suggest spatio-temporal co-occurrence of refugia of African birds and mammals. <i>GLOBAL ECOLOGY AND BIOGEOGRAPHY</i>, <b>22</b> (3), pp. 351-363. <a href="http://dx.doi.org/10.1111/geb.12045"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lloyd GT; Friedman M (2013) A survey of palaeontological sampling biases in fishes based on the Phanerozoic record of Great Britain. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>372</b> , pp. 5-17. <a href="http://dx.doi.org/10.1016/j.palaeo.2012.07.023"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Ridgwell A; Sagoo N; Stone EJ; Valdes P; Elderfield H; Pancost R; Foster GL; Haywood A; Kiehl J (2013) Warm climates of the past-a lesson for the future?. <i>Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences</i>, <b>371</b> (2001), 20130146. <a href="http://dx.doi.org/10.1098/rsta.2013.0146"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80314/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Moon EM; Peacock CL (2013) Modelling Cu(II) adsorption to ferrihydrite and ferrihydrite-bacteria composites: Deviation from additive adsorption in the composite sorption system. <i>Geochimica et Cosmochimica Acta</i>, <b>104</b> , pp. 148-164. <a href="http://dx.doi.org/10.1016/j.gca.2012.11.030"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
März C; Schnetger B; Brumsack H-J (2013) Nutrient leakage from the North Pacific to the Bering Sea (IODP Site U1341) following the onset of Northern Hemispheric Glaciation?. <i>Paleoceanography</i>, <b>28</b> (1), pp. 68-78. <a href="http://dx.doi.org/10.1002/palo.20011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Nielsen SG; Wasylenki LW; Rehkamper M; Peacock CL; Xue Z; Moon EM (2013) Towards an understanding of thallium isotope fractionation during adsorption to manganese oxides. <i>Geochimica et Cosmochimica Acta</i>, <b>117</b> , pp. 252-265. <a href="http://dx.doi.org/10.1016/j.gca.2013.05.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/85781/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Och LM; Shields-Zhou GA; Poulton SW; Manning C; Thirlwall MF; Li D; Chen X; Ling H; Osborn T; Cremonese L (2013) Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China. <i>Precambrian Research</i>, <b>225</b> , pp. 166-189. <a href="http://dx.doi.org/10.1016/j.precamres.2011.10.005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Partin CA; Bekker A; Planavsky NJ; Scott CT; Gill BC; Li C; Podkovyrov V; Maslov A; Konhauser KO; Lalonde SV (2013) Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. <i>Earth and Planetary Science Letters</i>, <b>369-370</b> , pp. 284-293. <a href="http://dx.doi.org/10.1016/j.epsl.2013.03.031"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Sagoo N; Valdes P; Flecker R; Gregoire LJ (2013) The Early Eocene equable climate problem: can perturbations of climate model parameters identify possible solutions?. <i>Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences</i>, <b>371</b> (2001). <a href="http://dx.doi.org/10.1098/rsta.2013.0123"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Salzmann U; Dolan AM; Haywood AM; Chan W-L; Voss J; Hill DJ; Abe-Ouchi A; Otto-Bliesner B; Bragg FJ; Chandler MA (2013) Challenges in reconstructing terrestrial warming of the pliocene revealed by data-model discord. <i>Nature Climate Change</i>, <b>3</b> , pp. 969-974. <a href="http://dx.doi.org/10.1038/nclimate2008"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80045/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Scott C; Planavsky NJ; Dupont CL; Kendall B; Gill BC; Robbins LJ; Husband KF; Arnold GL; Wing BA; Poulton SW (2013) Bioavailability of zinc in marine systems through time. <i>Nature Geoscience</i>, <b>6</b> , pp. 125-128.
Senior MJM; Hamer KC; Bottrell S; Edwards DP; Fayle TM; Lucey JM; Mayhew PJ; Newton R; Peh KS-H; Sheldon FH (2013) Trait-dependent declines of species following conversion of rain forest to oil palm plantations. <i>Biodiversity and Conservation</i>, <b>22</b> (1), pp. 253-268. <a href="http://dx.doi.org/10.1007/s10531-012-0419-7"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Song H; Wignall PB; Tong J; Yin H (2013) Two pulses of extinction during the Permian-Triassic crisis. <i>Nature Geoscience</i>, <b>6</b> (1), pp. 52-56. <a href="http://dx.doi.org/10.1038/ngeo1649"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Sun Y; Joachimski MM; Wignall PB; Yan C; Chen Y; Jiang H; Wang L; Lai X (2013) Response to comment on "Lethally Hot Temperatures during the Early Triassic Greenhouse". <i>Science</i>, <b>339</b> (6123), pp. 1093-1095. <a href="http://dx.doi.org/10.1126/science.1233090"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Sun Y; Joachimski MM; Wignall PB; Yan C; Chen Y; Jiang H; Wang L; Lai X (2013) Response to comment on "Lethally Hot Temperatures during the Early Triassic Greenhouse". <i>Science</i>, <b>339</b> (6123), pp. 1093-1095. <a href="http://dx.doi.org/10.1126/science.1233090"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wang R; Xiao W; März C; Li Q (2013) Late Quaternary paleoenvironmental changes revealed by multi-proxy records from the Chukchi Abyssal Plain, western Arctic Ocean. <i>Global and Planetary Change</i>, <b>108</b> , pp. 100-118. <a href="http://dx.doi.org/10.1016/j.gloplacha.2013.05.017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Watcham E; Shennan I; Barlow N (2013) Scale considerations in using diatoms as indicators of sea-level change: lessons from Alaska. <i>Journal of Quaternary Science</i>, <b>28</b> (2), pp. 165-179. <a href="http://dx.doi.org/10.1002/jqs.2592"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Watson AJ; Ledwell JR; Messias M-J; King BA; Mackay N; Meredith MP; Mills B; Naveira Garabato AC (2013) Rapid cross-density ocean mixing at mid-depths in the Drake Passage measured by tracer release. <i>Nature</i>, <b>501</b> (7467), pp. 408-411. <a href="http://dx.doi.org/10.1038/nature12432"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90314/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wehrmann LM; Arndt S; März C; Ferdelman TG; Brunner B (2013) The evolution of early diagenetic signals in Bering Sea subseafloor sediments in response to varying organic carbon deposition over the last 4.3Ma. <i>Geochimica et Cosmochimica Acta</i>, <b>109</b> , pp. 175-196. <a href="http://dx.doi.org/10.1016/j.gca.2013.01.025"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Woodcock P; Edwards DP; Newton RJ; Vun Khen C; Bottrell SH; Hamer KC (2013) Impacts of intensive logging on the trophic organisation of ant communities in a biodiversity hotspot. <i>PLoS One</i>, <b>8</b> (4), pp. e60756. <a href="http://dx.doi.org/10.1371/journal.pone.0060756"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/80084/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Yan C; Wang L; Jiang H; Wignall PB; Sun Y; Chen Y; Lai X (2013) Uppermost permian to lower triassic conodonts at bianyang section, Guihzou Province, South China. <i>Palaios</i>, <b>28</b> (8), pp. 509-522. <a href="http://dx.doi.org/10.2110/palo.2012.p12-077r"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Zhang R; Yan Q; Zhang ZS; Jiang D; Otto-Bliesner BL; Haywood AM; Hill DJ; Dolan AM; Stepanek C; Lohmann G (2013) Mid-Pliocene East Asian monsoon climate simulated in the PlioMIP. <i>Climate of the Past</i>, <b>9</b> (5), pp. 2085-2099. <a href="http://dx.doi.org/10.5194/cp-9-2085-2013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Zhang ZS; Nisancioglu KH; Chandler MA; Haywood AM; Otto-Bliesner BL; Ramstein G; Stepanek C; Abe-Ouchi A; Chan WL; Bragg FJ (2013) Mid-pliocene Atlantic Meridional Overturning Circulation not unlike modern. <i>Climate of the Past</i>, <b>9</b> (4), pp. 1495-1504. <a href="http://dx.doi.org/10.5194/cp-9-1495-2013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Shennan I; Barlow N; Garrett E; Davies F (2013) <i>Late Holocene earthquakes in Kodiak Island, Alaska and implications for plate segmentation</i> USGS National Earthquake Hazards Reduction Program (NEHRP) report.

2012 & previous

Hallam A; Wignall PB (1997) <i>Mass extinctions and their aftermath</i>. Oxford: Oxford University Press.
Hu X; Wang W; Scott RW; Wagreich M; Jansa L eds. (2009) <i>Characterization of iron partitioning in Cretaceous oceanic red beds of the Chuangde section, South Tibet</i>.
Morrow J; Over J; Wignall PB (2005) <i>Understanding Late Devonian and Permian-Triassic biotic and climatic events: towards an integrated approach</i>. Elsevier.
Williams M; Haywood AM; Gregory J; Schmidt D (2007) <i>Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies</i>. The Geological Society, London.
Bond DPG; Wignall PB (2005) Evidence for Late Devonian (Kellwasser) anoxic events in the Great Basin, western United States. <i>In:</i> Morrow; J; Over; J; Wignall; B P eds. <i>Understanding Late Devonian and Permian-Triassic biotic and climatic events: towards an integrated approach</i>, Developments in Palaeontology and Stratigraphy, Elsevier, pp. 225-261. <a href="http://eprints.whiterose.ac.uk/221/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Francis J; Haywood A; Hill D; Markwick P; McDonald C (2012) Environmental change in the geological record. <i>The SAGE Handbook of Environmental Change: Volume 1</i>, pp. 165-180. <a href="http://dx.doi.org/10.4135/9781446253045.n8"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Francis JE; Haywood AM; Hill DJ; Markwick PJ; McDonald C (2012) Environmental Change in the Gological Record. <i>In:</i> Matthews et al. JA ed. <i>The SAGE Handbook of Environmental Change</i>, 1, SAGE Publications Ltd, pp. 160-180.
Haywood AM (2009) Pliocene Climates. <i>In:</i> Gornitz V ed. <i>Encyclopedia of Paleoclimatology and Ancient Environments</i>, Earth Sciences Series, Springer, .
Haywood AM; Smellie JL; Ashworth A; Cantrill DJ; Florindo F; Hambrey MJ; Hill DJ; Hillenbrand CD; Hunter SJ; Larter RD (2008) The Middle Miocene to Pliocene record of Antarctica and the Southern Ocean. <i>In:</i> Florindo F; Siegert M eds. <i>Antarctic Climate Evolution</i>, Developments in Earth & Environmental Science, 8, Elsevier, .
Haywood AM; Valdes PJ; Hill DJ; Williams M (2007) The mid Pliocene Warm Period: a test-bed for integrating data and models. <i>In:</i> Williams M; Haywood AM; Gregory J; Schmidt D eds. <i>Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies</i>, The Micropalaeontological Society, Special Publication, The Geological Society, London, pp. 443-458.
Hill DJ; Haywood AM; Hindmarsh RCA; Valdes PJ (2007) Characterising ice sheets during the mid Pliocene: evidence from data and models. <i>In:</i> Williams M; Haywood AM; Gregory J; Schmidt D eds. <i>Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies</i>, The Micropalaeontological Society, Special Publication, The Geological Society, London, pp. 517-538.
Little C (2008) Breathing sulphur: life on the abyssal black smokers. <i>In:</i> Benton MJ ed. <i>The Seventy Great Mysteries of the Natural World</i>, London: Thames & Hudson, pp. 167-170.
Little CTS (2001) Ancient hydrothermal vent and cold seep faunas. <i>In:</i> Briggs DEG; Crowther PR eds. <i>Palaeobiology II</i>, Oxford: Blackwell Science, pp. 447-451.
Racki G; Wignall PB (2005) Late Permian double-phased mass extinction and volcanism: an oceanographic approach. <i>In:</i> Morrow; J; Over; J; Wignall; B P eds. <i>Understanding Late Devonian and Permian-Triassic biotic and climatic events: towards an integrated approach</i>, Developments in Palaeontology and Stratigraphy, Elsevier, pp. 263-297.
Shennan I; Barlow N; Combellick R (2008) Palaeoseismological records of multiple great earthquakes in south-central Alaska: a 4000 year record at Girdwood. <i>In:</i> Freymueller J; Haeussler P; Wesson R; Ekstrom G eds. <i>Active tectonics and seismic potential of Alaska.</i>, AGU Geophysical Monograph Series, pp. 185-199. <a href="http://dx.doi.org/10.1029/179GM10"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Sherman D; Hubbard C; Peacock C (2008) Surface complexation of U(VI) by Fe and Mn (hydr)oxides. <i>In:</i> Merkel; B J; Hasche-Berger A eds. <i>Uranium, Mining and Hydrogeology</i>, Berlin, Heidelberg: Springer, . <a href="http://dx.doi.org/10.1007/978-3-540-87746-2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall P (2008) The End-Permian crisis, aftermath and subsequent recovery. <i>In:</i> Okada; H; Mawatari; F S; Suzuki; N; Gautam; P eds. <i>Origin and Evolution of Natural Diversity</i>, 21st Century for Neo-Science of Natural History, Hokkaido, Japan: Hokkaido University, pp. 43-48.
Wignall PB (2004) Anoxic environments. <i>In:</i> Selley; C R; Cocks; M LR; Plimer; R I eds. <i>Encyclopedia of Geology</i>, Elsevier, pp. 495-501.
Wignall PB (2004) Permian. <i>In:</i> Selley; C R; Cocks; M LR; Plimer; R I eds. <i>Encyclopedia of Geology</i>, Elsevier, pp. 214-218.
Wignall PB (2004) Biotic recovery after mass extinctions. <i>McGraw-Hill 2004 yearbook of science and technology</i>, McGraw-Hill Professional, New York, .
Wignall PB (2004) Causes of mass extinctions. <i>In:</i> Taylor PD ed. <i>Extinctions in the history of life</i>, Cambridge University Press, Cambridge, pp. 119-150.
Wignall PB (2005) Volcanism and mass extinctions. <i>In:</i> Marti J; Ernst G eds. <i>Volcanoes and the environment</i>, Cambridge: Cambridge University Press, pp. 207-226.
Wignall PB (2005) Introduction. <i>In:</i> Morrow; J; Over; J; Wignall; B P eds. <i>Understanding Late Devonian and Permian-Triassic biotic and climatic events: towards an integrated approach</i>, Developments in Palaeontology and Stratigraphy, Elsevier, pp. 1-3.
Wignall PB (2004) Extinction: End-Triassic mass extinction. <i>Encyclopedia of Life Sciences</i>, Macmillian Publishers Ltd, Nature Publishing Group, .
Wignall PB (2005) The End Triassic Mass Extinction. <i>Encyclopedia of Life Sciences</i>, John Wiley & Sons, Ltd: Chichester, .
Wignall PB (2001) End Permian mass extinction. <i>In:</i> Briggs DEG; Crowther PR eds. <i>Palaeobiology II</i>, Oxford: Blackwell Scientific, pp. 226-229.
Wignall PB; Twitchett RJ (2002) Extent, duration, and nature of the Permian-Triassic superanoxic event. <i>In:</i> Koeberl C; MacLeod KG eds. pp. 395-413.
Williams M; Haywood AM; Gregory J; Schmidt D (2007) Deep time perspectives on climate change: an introduction. <i>In:</i> Williams; M; Haywood; M A; Gregory; J F; Schmidt; N D eds. <i>Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies</i>, The Micropalaeontological Society, Special Publication, The Geological Society, London, pp. 1-3.
Amano K; Little CTS (2004) <i>Miocene whale fall molluscan community from Hokkaido, Northern Japan</i> 32nd International geological congress.
Amano K; Little CTS; Inoue K (2006) <i>Miocene fossil whale-fall communities from Japan</i> 2nd International Palaeontological Congress, Beijing, pp. pp.480.
Amano K; Little CTS; Inoue K (2006) <i>Miocene fossil whale-fall communities from Japan</i> The Palaeontological Society of Japan 155th Regular Meeting, February, 2006, Kyoto, pp. pp.95.
Amano K; Little CTS; Inoue K (2005) <i>Miocene fossil whale-fall communities from Japan</i> Abstracts for Third International Symposium on Hydrothermal Vent and Seep Biology, Scripps Institution of Oceanography, pp. pp.158.
Birgel D; Little CTS; Reitner J; Pedersen K; Peckmann J (2004) <i>Fe-oxidising bacteria in jaspers from the active Logatchev hydrothermal field and the Early Jurassic Franciscan Complex, California: First results</i> International workshop on microbialites and microbial communities in sedimentary systems; Paris, France, pp. 19-20.
Bond DP; Wignall PB (2003) <i>Frasnian/Famennian boundary anoxia in the Great Basin, western United States</i> Geological Society of America, Annual Meeting, Seattle, Abstracts with Programs, pp. pp.208.
Bottrell SH; Barker AP; Newton RJ (1997) <i>Potential and pitfalls in the use of sulphate-oxygen isotopic compositions to trace environmental sulphur redox reactions</i> Journal of Conference Abstracts, pp. pp.138.
Crocket KC; Newton RJ; Bottrell SH; Wignall PB (2006) <i>Seawater sulfate cycling during the late palaeocene thermal maximum</i> GEOCHIMICA ET COSMOCHIMICA ACTA, pp. A118-A118. <a href="http://dx.doi.org/10.1016/j.gca.2006.06.150"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Francis JE; Haywood AM; Ashworth A; Roof S; Cantrill DJ (2004) <i>Neogene climates near the South Pole: evidence from fossil plants and climate-vegetation models</i> Palaeontological Association Annual Meeting; Lille, France, Book of abstracts, pp. pp.119.
Francis JE; Haywood AM; Valdes PJ (2004) <i>Plants and climates of the Milldle Pliocene Sirius group, Antarctica: evidence from fossil plants, climates and biome models</i> XXVIII SCAR Open Science Conference "Antarctica and the Southern Ocean in the Global System", Book of abstracts, pp. 249-250.
Francis JE; Haywood AM; Valdes PJ; Sellwood P (2002) <i>Middle Pliocene vegetation and climates of the Sirius Group, Antarctica: evidence from fossil plants, climate and biome models</i> Geological Society of America, Denver, USA, pp. pp.165.
Genio LD; Kiel S; Little CTS; Grahame J; Cunha MR (2006) <i>Phylogenetic relationships of two distinct groups of molluscs from deep-sea chemosynthetic ecosystems</i> 11th International Deep-Sea Biology Symposium, Southampton.
Genio LD; Kiel S; Little CTS; Grahame J; Cunha MR (2006) <i>Shell microstructure of mytiloids (Bivalvia)</i> Bivalvia 2006, International Congress on Bivalvia, Barcelona.
Gill F; Little CTS (2003) <i>Tertiary cold seeps in the Caribbean region</i> Workshop Programme, Biogeography and biodiversity of chemosynthetic ecosystems: planning for the future, Southampton Oceanographic Centre, pp. pp.21.
Gill F; Little CTS; Harding IC (2003) <i>Tertiary cold seeps in the Caribbean region</i> Palaeontological Association 47th Annual Meeting Abstracts, Palaeontological Society Newsletter, pp. pp.133.
Gill F; Little CTS; Harding IC (2002) <i>Miocene cold seep communities from the Caribbean region</i> Abstracts for Palaeontological Association 46th annual meeting, Palaeontological Society Newsletter, pp. pp.127.
Gill F; Little CTS; Harding IC; Todd J (2004) <i>Miocene cold seeps from the Carribean region</i> 32nd International geological congress.
Haas A; Sahling H; Elvert M; Little CTS; Bohrmann G; Peckmann J (2006) <i>Tube worms modifying carbonate precipitation at methane-seeps</i> for SEDIMENT 2006, the 4th Annual Conference of the Central European Section of SEPM, Göttingen.
Hallam A; Wignall PB (1998) <i>The end Triassic mass extinction event in North America: comparison with the end-Permian event</i> Geological Society of America Annual Meeting, Toronto, Abstracts with Programs, pp. pp.310.
Haywood AM; Valdes PJ; Francis JE (2002) <i>New predictions of mid-Pliocene Antarctic climate and biome distributions: applications of combined climate-vegetation modelling to the Sirius Group debate</i> Geological Society of America, Denver, USA, pp. pp.166.
Hunger S; Newton RJ; Bottrell S; Benning LG (2006) <i>The formation and preservation of greigite</i> GEOCHIMICA ET COSMOCHIMICA ACTA, pp. A273-A273. <a href="http://dx.doi.org/10.1016/j.gca.2006.06.550"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lai X; Wignall PB (1998) <i>Paleoecology of conodont Hindeodus and Clarkina across the Permian-Triassic boundary</i> Geological Society of America Annual Meeting, Toronto, Abstracts with Programs, pp. pp.398.
Little CTS (2005) <i>Hot stuff in the deep sea: hydrothermal vents and the origin of life</i> The Association for Science Education Annual Meeting 2005 Conference Handbook, pp. pp.79.
Little CTS (2001) <i>The fossil record of hydrothermal vent communities</i> Program and Abstracts, Second International Symposium on Deep-Sea hydrothermal vent biology, IFREMER, France, pp. pp.78.
Little CTS (2004) <i>Overview of the fossil record of chemosynthetic communities (vents, seeps, and whale falls)</i> 32nd International geological congress.
Little CTS (2006) <i>Hot stuff in the deep-sea: life present and past at hydrothermal vents</i> BA Festival of Science 2006, pp. pp.44.
Little CTS (2001) <i>Hydrothermal vent microbial communities: a fossil perspective</i> Program and Abstracts, Second International Symposium on Deep-Sea Hydrothermal Vent Biology, IFREMER, France, pp. pp.190.
Little CTS (2006) <i>Deep time perspectives on chemosynthetic communities (vents, seeps and whale-falls)</i> 2nd International Palaeontological Congress, Beijing, pp. pp.485.
Little CTS (2002) <i>Hydrothermal vent and cold seep molluscs: view from the fossil record</i> Bulletin of the Malacological Society of London, pp. 5-6.
Little CTS (2003) <i>Four hundred and ninety million year record of bacteriogenic iron oxide precipitation at deep-sea hydrothermal vents</i> Abstracts for Palaeontological Association 47th annual meeting, Palaeontological Society Newsletter, pp. 143-144.
Little CTS (2005) <i>Deep time perspectives on chemosynthetic communities (vents, seeps and whale-falls)</i> Abstracts for Third International Symposium on Hydrothermal Vent and Seep Biology, Scripps Institution of Oceanography, pp. pp.2.
Little CTS; Amano K (2005) <i>Whale of a time in the deep sea</i> Palaeontological Association 49th annual meeting, pp. pp.22.
Little CTS; Campbell KA (2001) <i>Hydrothermal vent and cold seep communities: view from the fossil record</i> Abstracts, World Congress of Malacology, 2001, Vienna, Austria, pp. pp.195.
Little CTS; Campbell KA (2002) <i>Hydrothermal vent and cold seep mulluscs: view from the fossil record</i> Abstracts for Palaeontological Association 46th annual meeting. Palaeontological Society Newsletter, pp. 101-102.
Little CTS; Herrington RJ; Maslennikov VV; Boyce AJ (2003) <i>Fossils in VHMS and SEDEX deposits, and associated cherts: 3.2 billion year link between hydrothermal activity and life</i> Abstracts for the Geological Society's 2003 Fermor Flagship Meeting. Applied Earth Sciences (Transactions of the Institutions of Mining and Metallurgy: Section B), pp. pp.176.
Little CTS; Kiel S; Campbell KA; Peckmann J; Nobuhara T; Goedert J; Amano K; Gill F (2003) <i>Biogeography of hydrothermal vents and hydrocarbon seep communities: a palaeontological position statement</i> Workshop programme, biogeography and Biodiversity of Chemosynthetic Ecosystems: Planning for the Future. Southampton Oceanographic Centre, pp. 37-39.
Little CTS; Thorseth IH (2002) <i>Hydrothermal vent microbial communities: a fossil perspective</i> CAHIERS DE BIOLOGIE MARINE, pp. 317-319.
Moon EM; Peacock CL (2009) <i>Cu(II) sorption to Bacillus subtilis and bacteriogenic ferrihydrite: Insights from XAS spectroscopy</i> GEOCHIMICA ET COSMOCHIMICA ACTA, pp. A898-A898.
Moon EM; Peacock CL (2010) <i>Modelling trace-metal sorption to bacteriogenic iron oxides: Cu(II) and bacteriogenic ferrihydrite</i> GEOCHIMICA ET COSMOCHIMICA ACTA, pp. A723-A723.
Newton RJ (2001) <i>Conflicting data from several indices of water column oxygenation in the early Toarcian (Jurassic) of north Yorkshire, UK: evidence for cyclic anoxia</i> Geological Society of America Annual Meeting, Boston, USA.
Newton RJ; Bannon S; Bottrell SH (2004) <i>The isotopic composition of carbonate associated sulphate in the Late Proterozoic Dalradian limestones of Scotland</i> IsoPal 2; BGS, Keyworth, Nottingham UK.
Newton RJ; Barker AP; Bottrell SH; Tellam JH (1998) <i>Saline intrusion into an urban sandstone aquifer</i> Water-Rock Interaction, Proceedings of the 9th International Symposium on Water-Rock Interaction-WRI-9, Taupo, New Zealand, pp. 251-254.
Newton RJ; Bond D; Cope H; Wignall PB (2009) <i>A 'framboid gap' at the Permo-Triassic boundary</i> GEOCHIMICA ET COSMOCHIMICA ACTA, pp. A939-A939.
Newton RJ; Kafousia N; Reeves E; Wignall PB; Bottrell SH (2008) <i>The marine sulfate-oxygen isotope record of the early Toarcian anoxic event</i> GEOCHIMICA ET COSMOCHIMICA ACTA, pp. A679-A679.
Newton RJ; Pevitt EL; Wignall PB; Bottrell SH (2004) <i>Sulphate-oxygen isotope records from carbonate associated sulphate</i> GEOCHIM COSMOCHIM AC, pp. A326-A326.
Newton RJ; Reeves E; Kafousia N; Wignall PB; Bottrell SH (2006) <i>Questioning the global nature of the Toarcian carbon isotope excursions</i> GEOCHIMICA ET COSMOCHIMICA ACTA, pp. A443-A443. <a href="http://dx.doi.org/10.1016/j.gca.2006.06.890"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Newton RJ; Wignall PB; Bottrell SH; Metcalfe I (2007) <i>Degassing of oceanic H2S and its delivery to terrestrial ecosystems during the Permo-Triassic extinction</i> GEOCHIM COSMOCHIM AC, pp. A713-A713.
Nielsen SG; Peacock CL; Halliday AN (2008) <i>Investigation of Thallium isotope fractionation during sorption to Mn oxides</i> GEOCHIMICA ET COSMOCHIMICA ACTA, pp. A681-A681.
Peacock CL; Moon EM; Nielsen SG; Halliday AN (2009) <i>Oxidative scavenging of Tl by Mn oxide birnessite: Sorption and stable isotope fractionation</i> GEOCHIMICA ET COSMOCHIMICA ACTA, pp. A1003-A1003.
Peacock CL; Sherman DM (2005) <i>Sorption of Ni by marine Fe-Mn nodules and crusts: Surface complexation and structural incorporation of Ni in birnessite</i> GEOCHIMICA ET COSMOCHIMICA ACTA, pp. A610-A610.
Sherman DM; Bednarz E; Peacock CL; Archer C (2009) <i>Surface complexation of Cu on Birnessite (delta-MnO2): Controls on abundance and isotopic composition in the deep ocean</i> GEOCHIMICA ET COSMOCHIMICA ACTA, pp. A1208-A1208.
Sherman DM; Peacock CL (2004) <i>Metal sorption to iron(III) (hydr)oxides: The first surface complexation models consistent with spectroscopy and quantum chemistry</i> GEOCHIMICA ET COSMOCHIMICA ACTA, pp. A370-A370.
Sherman DM; Peacock CL; Cutting JP (2005) <i>Sorption of aqueous heavy metals by mineral surfaces: Insights from quantum chemistry, spectroscopy and surface complexation modeling.</i> ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, pp. U704-U704.
Sherman DM; Peacock CL; Hubbard CG (2007) <i>Surface complexation of Uranium(VI) on Fe/Mn (hydr)oxides</i> GEOCHIMICA ET COSMOCHIMICA ACTA, pp. A927-A927.
Silva-Tamayo JC; Naegler TF; Newton R; Wignall P; Grice K; Bottcher M (2009) <i>Global shallow marine euxinia triggering the latest Permian mass extinction: Evidence from Mo-isotopes</i> GEOCHIMICA ET COSMOCHIMICA ACTA, pp. A1224-A1224.
Twitchett RJ; Looy CV; Wignall PB (1998) <i>A new biostratigraphy for the Permian-Triassic boundary and Lower Triassic of East Greenland</i> Epicontinental Triassic International Symposium Abstracts, Hallesches Jahrbuch fur Geowissenschaften, pp. 178-179.
Wignall P (1994) <i>1.Progress in sequence stratigraphy: Burlington House</i> Journal of Petroleum Geology, pp. 360-361. <a href="http://dx.doi.org/10.1111/j.1747-5457.1994.tb00142.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB (2009) <i>Carbon isotope excursions at times of mass extinction</i> GEOCHIMICA ET COSMOCHIMICA ACTA, pp. A1441-A1441.
Wignall PB (2003) <i>Sequence of events during the end-Permian mass extinction</i> XVth International Conference on Carboniferous and Permian Stratigraphy, University of Utrecht, Abstract volume, pp. pp.584.
Wignall PB (2002) <i>Mass extinctions and large igneous provinces</i> Volcanic and Magmatic Studies Group Annual Meeting, UCL, Abstracts Book, pp. 57-58.
Wignall PB (2003) <i>The nature of the end Permian mass extinction and its bearing on volcanic extinction mechanisms</i> Geological Society multidisciplinary meeting on: Mantle plumes: physical processes, chemical signatures and biological effects, University of Cardiff. Abstract volume.
Wignall PB (1998) <i>Transgressive black shale problems</i> Geological Society of America Annual Meeting, Toronto, Abstracts with Programs, pp. pp.398.
Wignall PB (1994) <i>1.Sequence stratigraphy - applications to basins in Northern England: Leeds, UK</i> Journal of Petroleum Geology, pp. 243-243. <a href="http://dx.doi.org/10.1111/j.1747-5457.1994.tb00129.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Bond DP (2003) <i>A critical review of sea-level change during the Frasnian/Famennian mass extinction</i> Geological Society of America, Annual Meeting, Seattle, Abstracts with Programs, pp. pp.208.
Wignall PB; Bond DPG; Kuwahara K; Kakuwa Y (2009) <i>An 80 million year redox history from Panthalassa: Japanese deep-sea records</i> GEOCHIMICA ET COSMOCHIMICA ACTA, pp. A1442-A1442.
Wignall PB; Newton RJ (2002) <i>The nature of transgressive black shales</i> Geological Society of London, Thematic Black Shales Meeting, Abstract Volume.
Wignall PB; Twitchett RJ (1998) <i>Eustatic sea-level changes across the Permian-Triassic boundary and their relationship to the end-Permian mass extinction</i> Epicontinental Triassic International Symposium Abstracts, Hallesches Jahrbuch fur Geowissenschaften, pp. 186-187.
Wignall PB (2004) Recent developments: Environmental and climatic impact of large igneous provinces. <i>On website of the Large Igneous Provinces Commission</i>, .
Ali JR; Wignall PB (2007) Comment on "Fusiline biotic turnover across the Guadaluplan-Lopingian (middle-upper Permian) boundary in mid-oceanic carbonate build-ups: Biostratigraphy of accreted limestone in Japan" by Ayano Ota and Yukio Isozaki. <i>J ASIAN EARTH SCI</i>, <b>30</b> (1), pp. 199-200. <a href="http://dx.doi.org/10.1016/j.jseaes.2006.11.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Allison PA; Wignall PB; Brett CE (1995) Palaeo-oxygenation: effects and recognition. <i>Marine palaeoenvironmental analysis from fossils</i>, , pp. 97-112.
Allison PA; Wignall PB; Brett CE (1995) Palaeo-oxygenation: effects and recognition. <i>Geological Society, London, Special Publications</i>, <b>83</b> (1), pp. 97-112. <a href="http://dx.doi.org/10.1144/GSL.SP.1995.083.01.06"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Amano K; Little CTS (2005) Miocene whale-fall community from Hokkaido, northern Japan. <i>PALAEOGEOGR PALAEOCL</i>, <b>215</b> (3-4), pp. 345-356. <a href="http://dx.doi.org/10.1016/j.palaeo.2004.10.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/280/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Amano K; Little CTS; Inoue K (2007) A new Miocene whale-fall community from Japan. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>247</b> (3-4), pp. 236-242. <a href="http://dx.doi.org/10.1016/j.palaeo.2006.10.017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/43176/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Araujo MB; Nogues-Bravo D; Diniz-Filho JAF; Haywood AM; Valdes PJ; Rahbek C (2008) Quaternary climate changes explain diversity among reptiles and amphibians. <i>Ecography</i>, <b>31</b> (1), pp. 8-15. <a href="http://dx.doi.org/10.1111/j.2007.0906-7590.05318.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Archibald JD; Clemens WA; Padian K; Rowe T; Macleod N; Barrett PM; Gale A; Holroyd P; Sues H-D; Arens NC (2010) Cretaceous extinctions: multiple causes. <i>Science</i>, <b>328</b> (5981), pp. 973. <a href="http://dx.doi.org/10.1126/science.328.5981.973-a"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Aze T; Ezard THG; Purvis A; Coxall HK; Stewart DRM; Wade BS; Pearson PN (2011) A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. <i>Biological Reviews</i>, <b>86</b> , pp. 900-927.
Baker KM; Bottrell SH; Hatfield D; Mortimer RJG; Newton RJ; Odling NE; Raiswell R (2012) Reactivity of pyrite and organic carbon as electron donors for biogeochemical processes in the fractured Jurassic Lincolnshire limestone aquifer, UK. <i>Chemical Geology</i>, <b>332-333</b> , pp. 26-31. <a href="http://dx.doi.org/10.1016/j.chemgeo.2012.07.029"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Barker AP; Newton RJ; Bottrell SH; Tellam JH (1998) Processes affecting groundwater chemistry in a zone of saline intrusion into an urban sandstone aquifer. <i>Applied Geochemistry</i>, <b>13</b> , pp. 735-749.
Barlow NLM; Shennan I; Long AJ (2012) Relative sea-level response to Little Ice Age ice mass change in south central Alaska: Reconciling model predictions and geological evidence. <i>Earth and Planetary Science Letters</i>, <b>315-316</b> , pp. 62-75. <a href="http://dx.doi.org/10.1016/j.epsl.2011.09.048"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Beckmann B; Hofmann P; März C; Schouten S; Sinninghe Damsté JS; Wagner T (2008) Coniacian–Santonian deep ocean anoxia/euxinia inferred from molecular and inorganic markers: Results from the Demerara Rise (ODP Leg 207). <i>Organic Geochemistry</i>, <b>39</b> (8), pp. 1092-1096. <a href="http://dx.doi.org/10.1016/j.orggeochem.2008.03.019"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Benton MJ; Dunhill AM; Lloyd GT; Marx FG (2011) Assessing the quality of the fossil record: insights from vertebrates. <i>Geological Society Special Publications</i>, <b>358</b> , pp. 63-94. <a href="http://dx.doi.org/10.1144/SP358.6"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
BENTON MJ; LITTLE CTS (1994) Impact in the Caribbean and death of the dinosaurs. <i>Geology Today</i>, <b>10</b> (6), pp. 222-227. <a href="http://dx.doi.org/10.1111/j.1365-2451.1994.tb00994.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Blanchet CL; Kasten S; Vidal L; Poulton SW; Ganeshram R; Thouveny N (2012) Influence of diagenesis on the stable isotopic composition of biogenic carbonates from the Gulf of Tehuantepec oxygen minimum zone. <i>Geochemistry, Geophysics, Geosystems</i>, <b>13</b> (4). <a href="http://dx.doi.org/10.1029/2011GC003800"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bond D; Wignall PB (2005) Chapter 9Evidence for late devonian (kellwasser) anoxic events in the great basin, western united states. <i>Developments in Palaeontology and Stratigraphy</i>, <b>20</b> (C), pp. 225-262. <a href="http://dx.doi.org/10.1016/S0920-5446(05)80009-3"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bond D; Wignall PB; Racki G (2004) Extent and duration of marine anoxia during the Frasnian-Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. <i>GEOL MAG</i>, <b>141</b> (2), pp. 173-193. <a href="http://dx.doi.org/10.1017/S0016756804008866"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/297/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Bond DPG; Hilton J; Wignall PB; Ali JR; Stevens LG; Sun YD; Lai XL (2010) The Middle Permian (Capitanian) mass extinction on land and in the oceans. <i>EARTH-SCI REV</i>, <b>102</b> (1-2), pp. 100-116. <a href="http://dx.doi.org/10.1016/j.earscirev.2010.07.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bond DPG; Wignall PB (2010) Pyrite framboid study of marine Permo-Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. <i>Geological Society of America Bulletin</i>, <b>122</b> (7/8), pp. 1265-1279. <a href="http://dx.doi.org/10.1130/B30042.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bond DPG; Wignall PB (2009) Latitudinal selectivity of foraminifer extinctions during the late Guadalupian crisis. <i>PALEOBIOLOGY</i>, <b>35</b> (4), pp. 465-483.
Bond DPG; Wignall PB (2009) Abstract of “The role of sea-level change and marine anoxia in the Frasnian-Famennian (Late Devonian) mass extinction”. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>273</b> (3-4), pp. 365-367. <a href="http://dx.doi.org/10.1016/j.palaeo.2008.12.012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bond DPG; Wignall PB (2008) The role of sea-level change and marine anoxia in the Frasnian-Famennian (Late Devonian) mass extinction. <i>PALAEOGEOGR PALAEOCL</i>, <b>263</b> (3-4), pp. 107-118. <a href="http://dx.doi.org/10.1016/j.palaeo.2008.02.015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/3460/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Bond DPG; Wignall PB; Wang W; Izon G; Jiang HS; Lai XL; Sun YD; Newton RJ; Shao LY; Vedrine S (2010) The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of South China. <i>PALAEOGEOGR PALAEOCL</i>, <b>292</b> (1-2), pp. 282-294. <a href="http://dx.doi.org/10.1016/j.palaeo.2010.03.056"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bond DPG; Wignall PB; Wang W; Vedrine S; Jiang HS; Lai XL; Sun YD; Newton RJ; Cope H; Izon G (2010) The mid-Capitanian (middle Permian) mass extinction and carbon isotope record of south China. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>292</b> , pp. 282-294. <a href="http://dx.doi.org/10.1016/j.palaeo.2010.03.056"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bonham S; Haywood AM; Lunt DJ; Collins M; Salzmann U (2008) ENSO, Pliocene Climate and Equifinality. <i>Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences</i>, .
Bonham SG; Haywood AM; Lunt DJ; Collins M; Salzmann U (2009) El Nino-Southern Oscillation, Pliocene climate and equifinality. <i>PHILOS T R SOC A</i>, <b>367</b> (1886), pp. 127-156. <a href="http://dx.doi.org/10.1098/rsta.2008.0212"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bottrell SH; Leosson M; Newton RJ (1996) The origin of brine inflows at Boulby potash mine, UK. <i>Transactions of the Institution of Mining and Metallurgy. Section B: Applied Earth Science</i>, <b>105</b> , pp. 159-164.
Bottrell SH; Leosson MA; Newton RJ (1996) Origin of brine inflows at Boulby potash mine, Cleveland, England. <i>TRANSACTIONS OF THE INSTITUTION OF MINING AND METALLURGY SECTION B-APPLIED EARTH SCIENCE</i>, <b>105</b> , pp. B159-B164.
Bottrell SH; Moncaster SJ; Tellam JH; Lloyd JW; Fisher QJ; Newton RJ (2000) Controls on bacterial sulphate reduction in a dual porosity aquifer system: the Lincolnshire Limestone aquifer, England. <i>CHEMICAL GEOLOGY</i>, <b>169</b> (3-4), pp. 461-470.
Bottrell SH; Newton RJ (2006) Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. <i>EARTH-SCIENCE REVIEWS</i>, <b>75</b> (1-4), pp. 59-83. <a href="http://dx.doi.org/10.1016/j.earscirev.2005.10.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bowman VC; Francis JE; Riding JB; Hunter SJ; Haywood AM (2012) A latest Cretaceous to earliest Paleogene dinoflagellate cyst zonation from Antarctica, and implications for phytoprovincialism in the high southern latitudes. <i>Review of Palaeobotany and Palynology</i>, <b>171</b> , pp. 40-56. <a href="http://dx.doi.org/10.1016/j.revpalbo.2011.11.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Boyce AJ; Little CTS; Russell MJ (2003) A new fossil vent biota in the Ballynoe barite deposit, Silvermines, Ireland: Evidence for intracratonic sea-floor hydrothermal activity about 352 Ma. <i>ECON GEOL BULL SOC</i>, <b>98</b> (3), pp. 649-656.
Braconnot P; Marzin C; Gregoire L; Mosquet E; Marti O (2008) Monsoon response to changes in Earth's orbital parameters: comparisons between simulations of the Eemian and of the Holocene. <i>Climate ot the Past</i>, <b>4</b> , pp. 281-294. <a href="http://dx.doi.org/10.5194/cp-4-281-2008"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/85256/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Bradshaw CD; Lunt DJ; Flecker R; Salzmann U; Pound MJ; Haywood AM; Eronen JT (2012) The relative roles of CO2 and palaeogeography in determining late Miocene climate: results from a terrestrial model-data comparison. <i>Climate of the Past</i>, <b>8</b> (4), pp. 1257-1285. <a href="http://dx.doi.org/10.5194/cp-8-1257-2012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bradshaw CD; Lunt DJ; Flecker R; Salzmann U; Pound MJ; Haywood AM; Eronen JT (2012) Erratim: The relative roles of CO <inf>2</inf> and palaeogeography in determining late Miocene climate: Results from a terrestrial model-data comparison (Climate of the Past (2012) 8 (1257-1285)). <i>Climate of the Past</i>, <b>8</b> (4), pp. 1301-1307. <a href="http://dx.doi.org/10.5194/cp-8-1301-2012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Bragg FJ; Lunt DJ; Haywood AM (2012) Mid-Pliocene climate modelled using the UK Hadley Centre Model: PlioMIP Experiments 1 and 2. <i>GEOSCIENTIFIC MODEL DEVELOPMENT</i>, <b>5</b> (5), pp. 1109-1125. <a href="http://dx.doi.org/10.5194/gmd-5-1109-2012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Brookfield, M E; Shellnutt, J G; Qi, L; Hannigan, R; Bhat, G M; Wignall P (2010) Platinum element group variations at the Permo-Triassic boundary in Kashmir and British Columbia and their significance. <i>Chemical Geology</i>, <b>272</b> , pp. 12-19.
Brusatte SL; Benton MJ; Lloyd GT; Ruta M; Wang SC (2010) Macroevolutionary patterns in the evolutionary radiation of archosaurs (Tetrapoda: Diapsida). <i>Earth and Environmental Science Transactions of the Royal Society of Edinburgh</i>, <b>101</b> (3-4), pp. 367-382. <a href="http://dx.doi.org/10.1017/S1755691011020056"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Brusatte SL; Benton MJ; Ruta M; Lloyd GT (2008) Superiority, Competition, and Opportunism in the Evolutionary Radiation of Dinosaurs. <i>Science</i>, <b>321</b> (5895), pp. 1485-1488. <a href="http://dx.doi.org/10.1126/science.1161833"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Brusatte SL; Benton MJ; Ruta M; Lloyd GT (2008) The first 50 Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity. <i>Biology Letters</i>, <b>4</b> (6), pp. 733-736. <a href="http://dx.doi.org/10.1098/rsbl.2008.0441"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Burke IT; Mayes WM; Peacock CL; Brown AP; Jarvis AP; Gruiz K (2012) Speciation of arsenic, chromium and vanadium in red mud samples from the Ajka spill site, Hungary. <i>Environmental Science and Technology</i>, <b>46</b> , pp. 3085-3092. <a href="http://dx.doi.org/10.1021/es3003475"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Canfield DE; Poulton SW; Knoll AH; Narbonne GM; Ross G; Goldberg T; Strauss H (2008) Ferruginous conditions dominated later neoproterozoic deep-water chemistry. <i>Science</i>, <b>321</b> (5891), pp. 949-952. <a href="http://dx.doi.org/10.1126/science.1154499"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Canfield DE; Poulton SW; Narbonne GM (2007) Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. <i>Science</i>, <b>315</b> (5808), pp. 92-95. <a href="http://dx.doi.org/10.1126/science.1135013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Chandler MA; Dowsett HJ; Haywood AM (2008) The PRISM Model-Data Cooperative: Mid-Pliocene Data-Model Comparisons. <i>PAGES News</i>, <b>16</b> (2), pp. 24-25.
Clark JM; Bottrell SH; Evans CD; Monteith DT; Bartlett R; Rose R; Newton RJ; Chapman PJ (2010) The importance of the relationship between scale and process in understanding long-term DOC dynamics. <i>Sci Total Environ</i>, <b>408</b> (13), pp. 2768-2775. <a href="http://dx.doi.org/10.1016/j.scitotenv.2010.02.046"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Clark N; Williams M; Okamura B; Smellie J; Nelson A; Knowles T; Taylor P; Leng M; Zalasiewicz J; Haywood A (2010) Early Pliocene Weddell Sea seasonality determined from bryozoans. <i>STRATIGRAPHY</i>, <b>7</b> (2-3), pp. 199-206.
Coburn PM; Raiswell R; Bottrell S; Newton R (2002) High-resolution sulphur isotopic analysis, using laser ablation techniques, on pyritised fossils from the Hunsruck Slate, Western Germany. <i>GEOCHIM COSMOCHIM AC</i>, <b>66</b> (15A), pp. A145-A145.
Cox N; Barlow N (2008) Stata tip 62: Plotting on reversed scales. <i>The Stata Journal</i>, <b>8</b> (2), pp. 295-298.
Dal Corso J; Mietto P; Newton RJ; Pancost RD; Preto N; Roghi G; Wignall PB (2012) Discovery of a major negative  13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts. <i>Geology</i>, <b>40</b> (1), pp. 79-82. <a href="http://dx.doi.org/10.1130/G32473.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dal Corso J; Preto N; Kustatscher E; Mietto P; Roghi G; Jenkyns HC (2011) Carbon-isotope variability of Triassic amber, as compared with wood and leaves (Southern Alps, Italy). <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>302</b> (3-4), pp. 187-193. <a href="http://dx.doi.org/10.1016/j.palaeo.2011.01.007"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Davies RJ; Thatcher KE; Armstrong H; Yang J; Hunter S (2012) Tracking the relict bases of marine methane hydrates using their intersections with stratigraphic reflections. <i>Geology</i>, <b>40</b> (11), pp. 1011-1014. <a href="http://dx.doi.org/10.1130/G33297.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dellwig O; Leipe T; März C; Glockzin M; Pollehne F; Schnetger B; Yakushev EV; Böttcher ME; Brumsack H-J (2010) A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins. <i>Geochimica et Cosmochimica Acta</i>, <b>74</b> (24), pp. 7100-7115. <a href="http://dx.doi.org/10.1016/j.gca.2010.09.017"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dolan AM; Haywood AM; Dowsett HJ (2012) Climate model simulations of the mid-Pliocene: Earth's last great interval of global warmth. <i>Eos</i>, <b>93</b> (2), pp. 18-18.
Dolan AM; Haywood AM; Hill DJ; Dowsett HJ; Hunter SJ; Lunt DJ; Pickering SJ (2011) Sensitivity of Pliocene ice sheets to orbital forcing. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>309</b> (1-2), pp. 98-110. <a href="http://dx.doi.org/10.1016/j.palaeo.2011.03.030"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dolan AM; Koenig SJ; Hill DJ; Haywood AM; DeConto RM (2011) Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) – experimental design. <i>Geoscientific Model Development</i>, <b>5</b> , pp. 963-974. <a href="http://dx.doi.org/10.5194/gmd-5-963-2012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dowsett H; Robinson M; Haywood A; Salzmann U; Hill D; Sohl L; Chandler M; Williams M; Foley K; Stoll D (2010) The PRISM3D paleoenvironmental reconstruction. <i>STRATIGRAPHY</i>, <b>7</b> (2-3), pp. 123-139.
Dowsett HJ; Haywood AM; Valdes PJ; Robinson MM; Lunt DJ; Hill DJ; Stoll DK; Foley KM (2011) Sea Surface Temperatures of the Mid-Piacenzian Warm Period: A Comparison of PRISM3 and HadCM3. <i>Palaeogeography Palaeoclimatology Palaeoecology</i>, <b>309</b> (1-2), pp. 83-91. <a href="http://dx.doi.org/10.1016/j.palaeo.2011.03.016"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dowsett HJ; Robinson MM; Haywood AM; Hill DJ; Dolan AM; Stoll DK; Chan WL; Abe-Ouchi A; Chandler MA; Rosenbloom NA (2012) Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. <i>Nature Climate Change</i>, . <a href="http://dx.doi.org/10.1038/NCLIMATE1455"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dowsett HJ; Robinson MM; Haywood AM; Hill DJ; Dolan AM; Stoll DK; Chan WL; Abe-Ouchi A; Chandler MA; Rosenbloom NA (2012) Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. <i>Nature Climate Change</i>, <b>2</b> (5), pp. 365-371. <a href="http://dx.doi.org/10.1038/nclimate1455"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dunhill AM (2012) Problems with using rock outcrop area as a paleontological sampling proxy: rock outcrop and exposure area compared with coastal proximity, topography, land use, and lithology. <i>PALEOBIOLOGY</i>, <b>38</b> (1), pp. 126-143. <a href="http://dx.doi.org/10.1666/10062.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dunhill AM (2011) Using remote sensing and a geographic information system to quantify rock exposure area in England and Wales: Implications for paleodiversity studies. <i>Geology</i>, <b>39</b> (2), pp. 111-114. <a href="http://dx.doi.org/10.1130/G31503.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dunhill AM (2012) Problems with using rock outcrop area as a paleontological sampling proxy: rock outcrop and exposure area compared with coastal proximity, topography, land use, and lithology. <i>Paleobiology</i>, <b>38</b> (1), pp. 126-143. <a href="http://dx.doi.org/10.1017/S0094837300000440"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Dunhill AM; Benton MJ; Twitchett RJ; Newell AJ (2012) Completeness of the fossil record and the validity of sampling proxies at outcrop level. <i>Palaeontology</i>, <b>55</b> (6), pp. 1155-1175. <a href="http://dx.doi.org/10.1111/j.1475-4983.2012.01149.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Etienne RS; Haegeman B; Stadler T; Aze T; Pearson PN; Purvis A; Phillimore AB (2012) Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. <i>Proceedings of the Royal Society B: Biological Sciences</i>, <b>279</b> (1732), pp. 1300-1309. <a href="http://dx.doi.org/10.1098/rspb.2011.1439"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Ezard THG; Aze T; Pearson PN; Purvis A (2011) Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. <i>Science</i>, <b>332</b> , pp. 349-351.
Ezard THG; Pearson PN; Aze T; Purvis A (2012) The meaning of birth and death (in macroevolutionary birth–death models). <i>Biology letters</i>, <b>8</b> , pp. 139-142.
Fietz S; Huguet C; Bendle J; Escala M; Gallacher C; Herfort L; Jamieson R; Martínez-Garcia A; McClymont EL; Peck VL (2012) Co-variation of crenarchaeol and branched GDGTs in globally-distributed marine and freshwater sedimentary archives. <i>Global and Planetary Change</i>, <b>92-93</b> , pp. 275-285. <a href="http://dx.doi.org/10.1016/j.gloplacha.2012.05.020"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Fisher QJ; Wignall PB (2001) Palaeoenvironmental controls on the uranium distribution in an Upper Carboniferous black shale (Gastrioceras listeri Marine Band) and associated strata; England. <i>CHEM GEOL</i>, <b>175</b> (3-4), pp. 605-621.
Florindo F; Nelson AE; Haywood AM (2008) Introduction to 'Antarctic cryosphere and Southern Ocean climate evolution (Cenozoic-Holocene)'. <i>PALAEOGEOGR PALAEOCL</i>, <b>260</b> (1-2), pp. 1-7. <a href="http://dx.doi.org/10.1016/j.palaeo.2007.12.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Fralick PW; Poulton SW; Canfield DE (2011) Does the Paleoproterozoic Animikie Basin record the sulfidic ocean transition?: Comment. <i>Geology</i>, <b>39</b> (5). <a href="http://dx.doi.org/10.1130/G31747C.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Francis JE; Haywood AM; Ashworth AC; Valdes PJ (2007) Tundra environments in the Neogene Sirius Group, Antarctica: evidence from the geological record and coupled atmosphere-vegetation models. <i>J GEOL SOC LONDON</i>, <b>164</b> , pp. 317-322.
Francis JE; Wignall PB (1997) Fieldwork safety at Leeds. <i>Teaching Earth Sciences</i>, <b>22</b> , pp. pp.91.
Franke W; Hart MB; Aze T; Hudson W; Smart CW; Gallois RW; Leslie AB; Burt CE; Chacksfield BC; Waters CN (2007) The Scott Simpson Lecture. <i>Geoscience in south-west England</i>, <b>11</b> , pp. 263-272.
Frei R; Gaucher C; Poulton SW; Canfield DE (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. <i>Nature</i>, <b>461</b> (7261), pp. 250-253. <a href="http://dx.doi.org/10.1038/nature08266"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Genio L; Johnson SB; Vrijenhoek RC; Cunha MR; Tyler PA; Kiel S; Little CTS (2008) New record of "Bathymodiolus" mauritanicus Cosel 2002 from the Gulf of Cadiz (NE Atlantic) mud volcanoes. <i>J SHELLFISH RES</i>, <b>27</b> (1), pp. 53-61.
Gill F (2011) FAECAL LIPID BIOMARKERS FROM MODERN AND ANCIENT HERBIVORES. <i>JOURNAL OF VERTEBRATE PALEONTOLOGY</i>, <b>31</b> , pp. 116-116.
Gill F; Crump M; Schouten R; Bull I (2009) LIPID BIOMARKER ANALYSIS OF NOTHROTHERIUM SHASTAENSIS COPROLITE. <i>J VERTEBR PALEONTOL</i>, <b>29</b> , pp. 105A-105A.
Gill FL; Crump MP; Schouten R; Bull ID (2009) Lipid analysis of a ground sloth coprolite. <i>QUATERNARY RES</i>, <b>72</b> (2), pp. 284-288. <a href="http://dx.doi.org/10.1016/j.yqres.2009.06.006"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Gill FL; Dewhurst RJ; Dungait JAJ; Evershed RP; Ives L; Li CS; Pancost RD; Sullivan M; Bera S; Bull ID (2010) Archaeol - a biomarker for foregut fermentation in modern and ancient herbivorous mammals?. <i>ORG GEOCHEM</i>, <b>41</b> (5), pp. 467-472. <a href="http://dx.doi.org/10.1016/j.orggeochem.2010.02.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Gill FL; Dewhurst RJ; Evershed RP; McGeough E; O'Kiely P; Pancost RD; Bull ID (2011) Analysis of archaeal ether lipids in bovine faeces. <i>ANIM FEED SCI TECH</i>, <b>166-67</b> , pp. 87-92. <a href="http://dx.doi.org/10.1016/j.anifeedsci.2011.04.006"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Gill FL; Harding IC; Little CTS; Todd JA (2005) Palaeogene and Neogene cold seep communities in Barbados, Trinidad and Venezuela: An overview. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>227</b> (1-3), pp. 191-209. <a href="http://dx.doi.org/10.1016/j.palaeo.2005.04.024"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/43146/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gohl K; Haywood A (2009) International viewpoint and news. <i>ENVIRON GEOL</i>, <b>56</b> (6), pp. 1249-1250. <a href="http://dx.doi.org/10.1007/s00254-008-1622-4"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Goldberg T; Archer C; Vance D; Poulton SW (2009) Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. <i>Geochimica et Cosmochimica Acta</i>, <b>73</b> (21), pp. 6502-6516. <a href="http://dx.doi.org/10.1016/j.gca.2009.08.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Goldberg T; Archer C; Vance D; Thamdrup B; McAnena A; Poulton SW (2012) Controls on Mo isotope fractionations in a Mn-rich anoxic marine sediment, Gullmar Fjord, Sweden. <i>Chemical Geology</i>, <b>296-297</b> , pp. 73-82. <a href="http://dx.doi.org/10.1016/j.chemgeo.2011.12.020"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Goldberg T; Poulton SW; Strauss H (2005) Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: Diagenetic constraints and seawater evolution. <i>Precambrian Research</i>, <b>137</b> (3-4), pp. 223-241. <a href="http://dx.doi.org/10.1016/j.precamres.2005.03.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Goldberg T; Shields G; Newton RJ (2011) Analytical Constraints on the Measurement of the Sulfur Isotopic Composition and Concentration of Trace Sulfate in Phosphorites: Implications for Sulfur Isotope Studies of Carbonate and Phosphate Rocks. <i>Geostandards and Geoanalytical Research</i>, . <a href="http://dx.doi.org/10.1111/j.1751-908X.2010.00102.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Gregoire LJ; Payne AJ; Valdes PJ (2012) Deglacial rapid sea level rises caused by ice-sheet saddle collapses. <i>Nature</i>, <b>487</b> (7406), pp. 219-222. <a href="http://dx.doi.org/10.1038/nature11257"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76493/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Gregoire LJ; Valdes PJ; Payne AJ; Kahana R (2011) Optimal tuning of a GCM using modern and glacial constraints. <i>Climate Dynamics</i>, <b>37</b> (3-4), pp. 705-719. <a href="http://dx.doi.org/10.1007/s00382-010-0934-8"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Gründel J; Kaim A; Nützel A; Little CTS (2011) Early Jurassic gastropods from England. <i>Palaeontology</i>, <b>54</b> , pp. 481-510. <a href="http://dx.doi.org/10.1111/j.1475-4983.2011.01043.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Génio L; Kiel S; Cunha MR; Grahame J; Little CTS (2012) Shell microstructures of mussels (Bivalvia: Mytilidae: Bathymodiolinae) from deep-sea chemosynthetic sites: Do they have a phylogenetic significance?. <i>Deep-Sea Research. Part 1: Oceanographic Research Papers</i>, <b>64</b> , pp. 86-103. <a href="http://dx.doi.org/10.1016/j.dsr.2012.02.002"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haas A; Little CTS; Sahling H; Bohrmann G; Himmler T; Peckmann J (2009) Mineralization of vestimentiferan tubes at methane seeps on the Congo deep-sea fan. <i>DEEP-SEA RES PT I</i>, <b>56</b> (2), pp. 283-293. <a href="http://dx.doi.org/10.1016/j.dsr.2008.08.007"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/43150/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
HALLAM A; WIGNALL PB (2000) Facies changes across the Triassic-Jurassic boundary in Nevada, USA. <i>Journal of the Geological Society</i>, <b>157</b> (1), pp. 49-54. <a href="http://dx.doi.org/10.1144/jgs.157.1.49"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hallam A; Wignall PB (1999) Mass extinctions and sea-level changes. <i>Earth Science Reviews</i>, <b>48</b> , pp. 217-250.
Hallam A; Wignall PB (2000) Facies change across the Triassic-Jurassic boundary in Nevada, USA. <i>Journal of the Geological Society</i>, <b>156</b> , pp. 453-456.
Hallam A; Wignall PB (2004) Discussion on sea-level change and facies development across potential Triassic-Jurassic boundary horizons, SW Britain. <i>Journal of the Geological Society</i>, <b>161</b> (6), pp. 1053-1056.
Hallam A; Wignall PB; Yin JR; Riding JB (2000) An investigation into possible facies changes across the Triassic-Jurassic boundary in southern Tibet. <i>SEDIMENT GEOL</i>, <b>137</b> (3-4), pp. 101-106.
Hammer O; Nakrem HA; Little CTS; Hryniewicz K; Sandy MR; Hurum JR; Druckenmiller P; Knutsen EM; Hoyberget M (2011) Hydrocarbon seeps from close to the Jurassic Cretaceous boundary, Svalbard. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>306</b> (1-2), pp. 15-26. <a href="http://dx.doi.org/10.1016/j.palaeo.2011.03.019"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/43152/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Harries PJ; Little CT (1999) The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>154</b> (1-2), pp. 39-66. <a href="http://dx.doi.org/10.1016/S0031-0182(99)00086-3"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hart MB; Aze T; Hudson W; Smart CW (2007) Planktic foraminifera from the proposed GSSP for the Oxfordian Stage: Redcliff Point, near Weymouth. <i>GEOSCIENCE IN SOUTH WEST ENGLAND</i>, <b>11</b> , pp. 273-273.
Haywood A; Valdes P; Peck V (2006) The future of El Niño?. <i>Planet Earth</i>, (WINTER 2006), pp. 30.
Haywood AM; Chandler MA; Valdes PJ; Salzmann U; Lunt DJ; Dowsett HJ (2009) Comparison of mid-Pliocene climate predictions produced by the HadAM3 and GCMAM3 General Circulation Models. <i>GLOBAL PLANET CHANGE</i>, <b>66</b> (3-4), pp. 208-224. <a href="http://dx.doi.org/10.1016/j.gloplacha.2008.12.014"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Cook SR (2005) Evidence for stasis in the Regional Wind Pattern of the Western Mediterranean since the Mid Pleistocene. <i>Quaternary Newsletter</i>, <b>106</b> , pp. 9-23.
Haywood AM; Dekens P; Ravelo AC; Williams M (2005) Warmer tropics during the mid-Pliocene? Evidence from alkenone paleothermometry and a fully coupled ocean-atmosphere GCM. <i>Geochemistry, Geophysics, Geosystems</i>, <b>6</b> (3), pp. pp.Q03010. <a href="http://dx.doi.org/10.1029/2004GC000799"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Dowsett HJ; Otto-Bliesner B; Chandler MA; Dolan AM; Hill DJ; Lunt DJ; Robinson MM; Rosenbloom N; Salzmann U (2010) Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 1). <i>GEOSCI MODEL DEV</i>, <b>3</b> (1), pp. 227-242.
Haywood AM; Dowsett HJ; Otto-Bliesner B; Chandler MA; Dolan AM; Hill DJ; Lunt DJ; Robinson MM; Rosenbloom N; Salzmann U (2009) Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 1). <i>GEOSCI MODEL DEV</i>, <b>2</b> (2), pp. 1215-1244.
Haywood AM; Dowsett HJ; Robinson MM; Stoll DK; Dolan AM; Lunt DJ; Otto-Bliesner B; Chandler MA (2011) Pliocene Model Intercomparison Project(PlioMIP): experimental design and boundary conditions (Experiment 2). <i>Geoscientific Model Development</i>, <b>4</b> , pp. 571-577. <a href="http://dx.doi.org/10.5194/gmd-4-571-2011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Dowsett HJ; Valdes PJ; Lunt DJ; Francis JE; Sellwood BW (2009) Introduction. Pliocene climate, processes and problems. <i>PHILOS T R SOC A</i>, <b>367</b> (1886), pp. 3-17. <a href="http://dx.doi.org/10.1098/rsta.2008.0205"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Dowsett HJ; Valdes PJ; Lunt DJ; Francis JE; Sellwood BW (2008) Pliocene climate: processes and problems. <i>Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences</i>, .
Haywood AM; Ramstein G; Abe-Ouchi A (2011) Comparing structurally different climate models in a paleoenvironmental context. <i>Eos</i>, <b>92</b> (21), pp. 180-180.
Haywood AM; Ridgwell A; Lunt DJ; Hill DJ; Pound MJ; Dowsett HJ; Dolan AM; Francis JE; Williams M (2011) Are there pre-Quaternary geological analogues for a future greenhouse gas-induced global warming?. <i>Philosophical Transactions of the Royal Society of London</i>, <b>Series A</b> (369), pp. 933-956. <a href="http://dx.doi.org/10.1098/rsta.2010.0317"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Sellwood BW; Valdes PJ (2000) Regional warming: Pliocene (3 Ma) paleoclimate of Europe and the Mediterranean. <i>Geology</i>, <b>28</b> (12), pp. 1063-1066. <a href="http://dx.doi.org/10.1130/0091-7613(2000)028<1063:RWPMPO>2.3.CO;2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Sellwood BW; Valdes PJ (2000) Regional warming: Pliocene (3 Ma) paleoclimate of Europe and the Mediterranean. <i>Geology</i>, <b>28</b> (12), pp. 1063-1066. <a href="http://dx.doi.org/10.1130/0091-7613(2000)28<1063:RWPMPO>2.0.CO;2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Smellie JL; Ashworth AC; Cantrill DJ; Florindo F; Hambrey MJ; Hill D; Hillenbrand CD; Hunter SJ; Larter RD (2008) Chapter 10 Middle Miocene to Pliocene History of Antarctica and the Southern Ocean. <i>Developments in Earth and Environmental Sciences</i>, <b>8</b> , pp. 401-463. <a href="http://dx.doi.org/10.1016/S1571-9197(08)00010-4"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ (2006) Vegetation cover in a warmer world simulated using a dynamic global vegetation model for the Mid-Pliocene. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>237</b> (2-4), pp. 412-427. <a href="http://dx.doi.org/10.1016/j.palaeo.2005.12.012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ (2004) Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. <i>Earth and Planetary Science Letters</i>, <b>218</b> (3-4), pp. 363-377. <a href="http://dx.doi.org/10.1016/S0012-821X(03)00685-X"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ; Dowsett HJ (2009) Dedication: Prof. Bruce William Sellwood (1946-2007) OBITUARY. <i>PHILOS T R SOC A</i>, <b>367</b> (1886), pp. 19-20. <a href="http://dx.doi.org/10.1098/rsta.2008.0208"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ; Francis JE; Sellwood BW (2002) Global middle Pliocene biome reconstruction: A data/model synthesis. <i>GEOCHEM GEOPHY GEOSY</i>, <b>3</b> , 1072. <a href="http://dx.doi.org/10.1029/2002GC000358"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ; Markwick PJ (2004) Cretaceous (Wealden) climates: a modelling perspective. <i>Cretaceous Research</i>, <b>25</b> (3), pp. 303-311. <a href="http://dx.doi.org/10.1016/j.cretres.2004.01.005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ; Peck VL (2007) A permanent El Nino-like state during the Pliocene?. <i>PALEOCEANOGRAPHY</i>, <b>22</b> (1), PA1213. <a href="http://dx.doi.org/10.1029/2006PA001323"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ; Sellwood BW (2002) Magnitude of climate variability during middle Pliocene warmth: a palaeoclimate modelling study. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>188</b> (1-2), pp. 1-24. <a href="http://dx.doi.org/10.1016/S0031-0182(02)00506-0"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ; Sellwood BW (2000) Global scale palaeoclimate reconstruction of the middle Pliocene climate using the UKMO GCM: initial results. <i>Global and Planetary Change</i>, <b>25</b> (3-4), pp. 239-256. <a href="http://dx.doi.org/10.1016/S0921-8181(00)00028-X"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ; Sellwood BW; Kaplan JO (2002) Antarctic climate during the middle Pliocene: model sensitivity to ice sheet variation. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>182</b> (1-2), pp. 93-115. <a href="http://dx.doi.org/10.1016/S0031-0182(01)00454-0"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Haywood AM; Valdes PJ; Sellwood BW; Kaplan JO; Dowsett HJ (2001) Modelling Middle Pliocene warm climates of the USA. <i>Palaeontologia Electronica</i>, <b>4</b> (1), pp. pp.21.
Haywood AM; Williams M (2005) The climate of the future: clues from 3 million years ago. <i>Geology Today</i>, <b>21</b> (4), pp. 138-143.
Haywood AM; Williams M (2005) Exploring warmer worlds in Earth's geological past. <i>Planet Earth</i>, , pp. pp.31.
Haywood AM; Williams M (2006) Forecasting future weather from Rocks. <i>Rockwatch</i>, <b>42</b> , pp. 8-9.
Haywood AM; Williams M (2004) Reconstructing the oceans of the Late Miocene: how the shell chemistry of fossils reveals ancient patterns of ocean circulation. <i>Teaching Earth Sciences</i>, <b>29</b> , pp. 25-27.
Hellawell J; Pancost R; Evershed R; Gill F; Nicholas C (2009) DEAD IN THE WATER: AN INVESTIGATION INTO EOCENE FISH MASS MORTALITY EVENTS. <i>J VERTEBR PALEONTOL</i>, <b>29</b> , pp. 113A-113A.
Henkel S; Mogollón JM; Nöthen K; Franke C; Bogus K; Robin E; Bahr A; Blumenberg M; Pape T; Seifert R (2012) Diagenetic barium cycling in Black Sea sediments – A case study for anoxic marine environments. <i>Geochimica et Cosmochimica Acta</i>, <b>88</b> , pp. 88-105. <a href="http://dx.doi.org/10.1016/j.gca.2012.04.021"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Herrington RJ; Little CTS (2000) Life in the dark. <i>Geoscientist</i>, <b>10</b> , pp. 4-5.
Herrington RJ; Maslennikov VV; Spiro B; Zaykov VV; Little CTS (1998) Ancient vent chimney structures in the Silurian massive sulphides of the Urals. <i>Geological Society, London, Special Publications</i>, <b>148</b> (1), pp. 241-257. <a href="http://dx.doi.org/10.1144/GSL.SP.1998.148.01.13"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hetzel A; März C; Vogt C; Brumsack H-J (2011) Geochemical environment of Cenomanian - Turonian black shale deposition at Wunstorf (northern Germany). <i>Cretaceous Research</i>, <b>32</b> (4), pp. 480-494. <a href="http://dx.doi.org/10.1016/j.cretres.2011.03.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hewitt RA; Wignall PB (1988) Structure and phylogenetic significance of Trachyteuthis (Coleoidea) from the Kimmeridge Clay of England. <i>Proceedings of the Yorkshire Geological Society</i>, <b>47</b> (2), pp. 149-153. <a href="http://dx.doi.org/10.1144/pygs.47.2.149"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Higgs N; Little CTS; Glover AG (2011) Bones as biofuel: a review of whale bone composition with implications for deep-sea biology and palaeoanthropology. <i>Proceedings of the Royal Society B</i>, <b>278</b> (1702), pp. 9-17. <a href="http://dx.doi.org/10.1098/rspb.2010.1267"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Higgs ND; Glover AG; Dahlgren TG; Little CTS (2010) Using computed-tomography to document borings by Osedax mucofloris in whale bone. <i>Cahiers de Biologie Marine</i>, <b>51</b> , pp. 401-405.
Higgs ND; Glover AG; Dahlgren TG; Little CTS (2011) Bone-boring worms: characterizing the morphology, rate, and method of bioerosion by Osedax mucofloris (Annelida, Siboglinidae). <i>The Biological Bulletin</i>, <b>221</b> (3), pp. 307-316.
Higgs ND; Little CTS; Glover AG (2011) Correction for Higgs et al. Bones as biofuel: a review of whale bone composition with implications for deep-sea biology and palaeoanthropology. <i>Proceedings of the Royal Society B: Biological Sciences</i>, <b>278</b> (1707), pp. 960-960. <a href="http://dx.doi.org/10.1098/rspb.2010.2553"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Higgs ND; Little CTS; Glover AG; Dahlgren TG; Smith CR; Dominici S (2012) Evidence of Osedax worm borings in Pliocene (~3 Ma) whale bone from the Mediterranean. <i>Historical Biology</i>, <b>24</b> (3), pp. 269-277. <a href="http://dx.doi.org/10.1080/08912963.2011.621167"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hill DJ; Csank AZ; Dolan AM; Lunt DJ (2012) Pliocene climate variability: Northern Annular Mode in models and tree-ring data. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>309</b> , pp. 118-127. <a href="http://dx.doi.org/10.1016/j.palaeo.2011.04.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hill DJ; Csank AZ; Dolan AM; Lunt DJ (2011) Pliocene climate variability: Northern Annular Mode in models and tree-ring data. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>309</b> (1-2), pp. 118-127. <a href="http://dx.doi.org/10.1016/j.palaeo.2011.04.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hill DJ; Dolan AM; Haywood AM; Hunter SJ; Stoll DK (2010) Sensitivity of the Greenland Ice Sheet to Pliocene sea surface temperatures. <i>STRATIGRAPHY</i>, <b>7</b> (2-3), pp. 111-121.
Hilário A; Capa M; Dahlgren TG; Halanych KM; Little CTS; Thornhill DJ; Verna C; Glover AG (2011) New perspectives on the ecology and evolution of siboglinid tubeworms. <i>PLoS ONE</i>, <b>6</b> (2), pp. 1-14. <a href="http://dx.doi.org/10.1371/journal.pone.0016309"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76706/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Hollingworth NTJ; Wignall PB (1992) The Callovian-Oxfordian boundary in Oxfordshire and Wiltshire based on two new temporary sections. <i>Proceedings of the Geologists' Association</i>, <b>103</b> (1), pp. 15-30. <a href="http://dx.doi.org/10.1016/S0016-7878(08)80195-2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hryniewicz K; Hammer O; Nakrem HA; Little CTS (2012) Microfacies of the Volgian-Ryazanian (Jurassic-Cretaceous) hydrocarbon seep carbonates from Sassenfjorden, central Spitsbergen, Svalbard. <i>Norwegian Journal of Geology</i>, <b>92</b> , pp. 113-131.
Hughes JK; Haywood A; Mithen SJ; Sellwood BW; Valdes PJ (2007) Investigating early hominin dispersal patterns: developing a framework for climate data integration. <i>J HUM EVOL</i>, <b>53</b> (5), pp. 465-474. <a href="http://dx.doi.org/10.1016/j.jhevol.2006.12.011"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Hunter SJ; Valdes PJ; Haywood AM; Markwick PJ (2008) Modelling Maastrichtian climate: Investigating the role of geography, atmospheric CO2 and vegetation. <i>Climate of the Past</i>, <b>4</b> , pp. 1-39.
Hunter SJ; Valdes PJ; Hunter SJ; Haywood AM; Markwick PJ (2008) Modelling Maastrichtian climate: Investigating the role of geography, atmospheric CO and vegetation. <i>Climate of the Past Discussions</i>, <b>4</b> (4), pp. 981-1019.
Héry M; Van Dongen BE; Gill F; Mondal D; Vaughan DJ; Pancost RD; Polya DA; Lloyd JR (2010) Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. <i>Geobiology</i>, <b>8</b> (2), pp. 155-168. <a href="http://dx.doi.org/10.1111/j.1472-4669.2010.00233.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Ivanovic RF; Freer J (2009) Science versus politics: truth and uncertainty in predictive modelling. <i>Hydrological Processes</i>, <b>23</b> (17), pp. 2549-2554. <a href="http://dx.doi.org/10.1002/hyp.7406"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Janssen AW; Little CTS (2010) Holoplanktonic Gastropoda (Mollusca) from the Miocene of Cyprus; systematics, biostratigraphy. <i>Palaeontology</i>, <b>53</b> (5), pp. 1111-1145. <a href="http://dx.doi.org/10.1111/j.1475-4983.2010.00993.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Jiang H; Lai X; Yan C; Aldridge RJ; Wignall P; Sun Y (2011) Revised conodont zonation and conodont evolution across the Permian–Triassic boundary at the Shangsi section, Guangyuan, Sichuan, South China. <i>Global and Planetary Change</i>, <b>77</b> (3-4), pp. 103-115. <a href="http://dx.doi.org/10.1016/j.gloplacha.2011.04.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Jiang HS; Lai XL; Luo GM; Aldridge R; Zhang KX; Wignall PB (2007) Restudy of conodont zonation and evolution across the P/T boundary at Meishan section, Changxing, Zhejiang, China. <i>Global and Planetary Change</i>, <b>55</b> (1-3), pp. 39-55. <a href="http://dx.doi.org/10.1016/j.gloplacha.2006.06.007"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
John EH; Cliff R; Wignall PB (2008) A positive trend in seawater Sr-87/Sr-86 values over the Early-Middle Frasnian boundary (Late Devonian) recorded in well-preserved conodont elements from the Holy Cross Mountains, Poland. <i>PALAEOGEOGR PALAEOCL</i>, <b>269</b> (3-4), pp. 166-175. <a href="http://dx.doi.org/10.1016/j.palaeo.2008.04.031"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
John EH; Wignall PB; Newton RJ; Bottrell SH (2010) δ<sup>34</sup>S<inf>CAS</inf> and δ<sup>18</sup>O<inf>CAS</inf> records during the Frasnian-Famennian (Late Devonian) transition and their bearing on mass extinction models. <i>Chemical Geology</i>, <b>275</b> (3-4), pp. 221-234. <a href="http://dx.doi.org/10.1016/j.chemgeo.2010.05.012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
John EH; Wignall PB; Newton RJ; Bottrell SH (2010) delta S-34(CAS) and delta O-18(CAS) records during the Frasnian-Famennian (Late Devonian) transition and their bearing on mass extinction models. <i>CHEM GEOL</i>, <b>275</b> (3-4), pp. 221-234. <a href="http://dx.doi.org/10.1016/j.chemgeo.2010.05.012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Johnston DT; Poulton SW; Dehler C; Porter S; Husson J; Canfield DE; Knoll AH (2010) An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA. <i>Earth and Planetary Science Letters</i>, <b>290</b> (1-2), pp. 64-73. <a href="http://dx.doi.org/10.1016/j.epsl.2009.11.059"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Johnston DT; Poulton SW; Fralick PW; Wing BA; Canfield DE; Farquhar J (2006) Evolution of the oceanic sulfur cycle at the end of the Paleoproterozoic. <i>Geochimica et Cosmochimica Acta</i>, <b>70</b> (23 SPEC. ISS.), pp. 5723-5739. <a href="http://dx.doi.org/10.1016/j.gca.2006.08.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Johnston DT; Poulton SW; Goldberg T; Sergeev VN; Podkovyrov V; Vorob'eva NG; Bekker A; Knoll AH (2012) Late Ediacaran redox stability and metazoan evolution. <i>Earth and Planetary Science Letters</i>, <b>335-336</b> , pp. 25-35. <a href="http://dx.doi.org/10.1016/j.epsl.2012.05.010"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Kendall B; Gordon GW; Poulton SW; Anbar AD (2011) Molybdenum isotope constraints on the extent of late Paleoproterozoic ocean euxinia. <i>Earth and Planetary Science Letters</i>, <b>307</b> (3-4), pp. 450-460. <a href="http://dx.doi.org/10.1016/j.epsl.2011.05.019"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Kendall B; Reinhard CT; Lyons TW; Kaufman AJ; Poulton SW; Anbar AD (2010) Pervasive oxygenation along late Archaean ocean margins. <i>Nature Geoscience</i>, <b>3</b> (9), pp. 647-652. <a href="http://dx.doi.org/10.1038/ngeo942"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Kerr AC; England RW; Wignall PB (2005) Mantle plumes: physical processes, chemical signatures, biological effects. <i>LITHOS</i>, <b>79</b> (3-4), pp. VII-X. <a href="http://dx.doi.org/10.1016/j.lithos.2004.09.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Kiel S; Campbell KA; Elder WP; Little CTS (2008) Jurassic and Cretaceous gastropods from hydrocarbon seeps in forearc basin and accretionary prism settings, California. <i>ACTA PALAEONTOL POL</i>, <b>53</b> (4), pp. 679-703.
Kiel S; Little CTS (2006) Cold-seep mollusks are older than the general marine mollusk fauna. <i>Science</i>, <b>313</b> (5792), pp. 1429-1431. <a href="http://dx.doi.org/10.1126/science.1126286"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/43148/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Knowles T; Taylor PD; Williams M; Haywood AM; Okamura B (2009) Pliocene seasonality across the North Atlantic inferred from cheilostome bryozoans. <i>PALAEOGEOGR PALAEOCL</i>, <b>277</b> (3-4), pp. 226-235. <a href="http://dx.doi.org/10.1016/j.palaeo.2009.04.006"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Kodrans-Nsiah M; März C; Harding IC; Kasten S; Zonneveld KAF (2009) Are the Kimmeridge Clay deposits affected by “burn-down” events? Palynological and geochemical studies on a 1 metre long section from the Upper Kimmeridge Clay Formation (Dorset, UK). <i>Sedimentary Geology</i>, <b>222</b> (3-4), pp. 301-313. <a href="http://dx.doi.org/10.1016/j.sedgeo.2009.09.015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Kraal P; Slomp CP; Reed DC; Reichart G-J; Poulton SW (2012) Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of the northern Arabian Sea. <i>Biogeosciences</i>, <b>9</b> (7), pp. 2603-2624. <a href="http://dx.doi.org/10.5194/bg-9-2603-2012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Krom MD; Mortimer RJG; Poulton SW; Hayes P; Davies IM; Davison W; Zhang H (2002) In-situ determination of dissolved iron production in recent marine sediments. <i>Aquatic Sciences</i>, <b>64</b> (3), pp. 282-291. <a href="http://dx.doi.org/10.1007/s00027-002-8072-y"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lai X; Wignall PB; Zhang K (2001) Palaeoecology of the conodonts Hindeodus and Clarkina during the Permian-Triassic transitional period. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>171</b> (1-2), pp. 63-72. <a href="http://dx.doi.org/10.1016/S0031-0182(01)00269-3"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lai XL; Wang W; Wignall PB; Bond DG; Jiang HS; Ali JR; John EH; Sun YD (2008) Palaeoenvironmental change during the end-Guadalupian (Permian) mass extinction in Sichuan, China. <i>PALAEOGEOGR PALAEOCL</i>, <b>269</b> (1-2), pp. 78-93. <a href="http://dx.doi.org/10.1016/j.palaeo.2008.08.005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lartaud F; Little CTS; de Rafelis M; Bayon G; Dyment J; Ildefonse B; Gressier V; Fouquet Y; Gaill F; Le Bris N (2011) Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages. <i>Proceedings of the National Academy of Sciences</i>, <b>108</b> (19), pp. 7698-7703. <a href="http://dx.doi.org/10.1073/pnas.1009383108"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/43151/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Lawrence KT; Herbert TD; Brown CM; Raymo ME; Haywood AM (2009) High-amplitude variations in north atlantic sea surface temperature during the early pliocene warm period. <i>Paleoceanography</i>, <b>24</b> (2).
Lawrence KT; Herbert TD; Brown CM; Raymo ME; Haywood AM (2009) High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. <i>PALEOCEANOGRAPHY</i>, <b>24</b> , PA2218. <a href="http://dx.doi.org/10.1029/2008PA001669"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Little C (2009) Hot stuff in the deep sea. <i>Planet Earth</i>, (WINTER), pp. 18-19.
Little CTS (2002) The fossil record of hydrothermal vent communities. <i>CAHIERS DE BIOLOGIE MARINE</i>, <b>43</b> (3-4), pp. 313-316.
Little CTS (2010) The Prolific Afterlife of Whales. <i>SCI AM</i>, <b>302</b> (2), pp. 78-+.
Little CTS (2000) Hot stuff in the Neotethys: Late Cretaceous hydrothermal vent communities from Cyprus and Oman. <i>Abstracts for Palaeontological Association 44th Annual Meeting, Palaeontological Society Newsletter</i>, (45), pp. pp.xviii.
Little CTS (1996) The Pliensbachian-Toarcian (Lower Jurassic) extinction event. <i>Special Paper of the Geological Society of America</i>, <b>307</b> , pp. 505-512.
Little CTS; Benton MJ (1995) Early Jurassic mass extinction: A global long-term event. <i>Geology</i>, <b>23</b> (6), pp. 495-498. <a href="http://dx.doi.org/10.1130/0091-7613(1995)023<0495:EJMEAG>2.3.CO;2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132653/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Little CTS; Campbell KA; Herrington RJ (2002) Why did ancient chemosynthetic seep and vent assemblages occur in shallower water than they do today? Comment. <i>INT J EARTH SCI</i>, <b>91</b> (1), pp. 149-153. <a href="http://dx.doi.org/10.1007/s005310100196"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Little CTS; Cann JR; Herrington RJ; Morisseau M (1999) Late Cretaceous hydrothermal vent communities from the Troodos ophiolite, Cyprus. <i>Geology</i>, <b>27</b> (11), pp. 1027-1030.
Little CTS; Danelian T; Herrington RJ; Haymon RM (2004) Early Jurassic hydrothermal vent community from the Franciscan Complex, California. <i>Journal of Paleontology</i>, <b>78</b> (3), pp. 542-559. <a href="http://dx.doi.org/10.1666/0022-3360(2004)078<0542:EJHVCF>2.0.CO;2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/287/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Little CTS; Glynn SEJ; Mills RA (2004) Four-hundred-and-ninety-million-year record of bacteriogenic iron oxide precipitation at sea-floor hydrothermal vents. <i>GEOMICROBIOL J</i>, <b>21</b> (6), pp. 415-429. <a href="http://dx.doi.org/10.1080/01490450490485845"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/338/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Little CTS; Herrington RJ; Haymon RM; Danelian T (1999) Early Jurassic hydrothermal vent community from the Franciscan Complex, San Rafael Mountains, California. <i>Geology</i>, <b>27</b> (2), pp. 167-170. <a href="http://dx.doi.org/10.1130/0091-7613(1999)027<0167:EJHVCF>2.3.CO;2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/132669/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Little CTS; Herrington RJ; Maslennikov VV; Boyce AJ (2003) Fossils in VHMS and SEDEX deposits, and associated cherts: 3.2 billion year link between hydrothermal activity and life. <i>Transactions of the Institution of Mining and Metallurgy, Section B: Applied Earth Science</i>, <b>112</b> (2 AUG).
Little CTS; Herrington RJ; Maslennikov VV; Morris NJ; Zaykov VV (1997) Silurian hydrothermal vent community from the southern Urals, Russia. <i>Nature</i>, <b>385</b> , pp. 146-148.
Little CTS; Herrington RJ; Maslennikov VV; Zaykov VV (1998) The fossil record of hydrothermal vent communities. <i>Geological Society, London, Special Publications</i>, <b>148</b> (1), pp. 259-270. <a href="http://dx.doi.org/10.1144/GSL.SP.1998.148.01.14"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Little CTS; Magalashvili AG; Banks DA (2007) Neotethyan Late Cretaceous volcanic arc hydrothermal vent fauna. <i>GEOLOGY</i>, <b>35</b> (9), pp. 835-838. <a href="http://dx.doi.org/10.1130/G23957A.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Little CTS; Maslennikov VV; Morris NJ; Gubanov AP (1999) Two Palaeozoic hydrothermal vent communities from the southern Ural mountains, Russia. <i>Palaeontology</i>, <b>42</b> (6), pp. 1043-1078.
Little CTS; Thorseth IH (2002) Hydrothermal vent microbial communities: a fossil perspective. <i>Cahiers de Biologie Marine</i>, <b>43</b> (3/4), pp. 317-320.
Little CTS; Vrijenhoek RC (2003) Are hydrothermal vent animals living fossils?. <i>Trends in Ecology and Evolution</i>, <b>18</b> (11), pp. 582-588. <a href="http://dx.doi.org/10.1016/j.tree.2003.08.009"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/283/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Lloyd GT (2012) A refined modelling approach to assess the influence of sampling on palaeobiodiversity curves: new support for declining Cretaceous dinosaur richness. <i>Biology Letters</i>, <b>8</b> (1), pp. 123-126. <a href="http://dx.doi.org/10.1098/rsbl.2011.0210"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lloyd GT; Davis KE; Pisani D; Tarver JE; Ruta M; Sakamoto M; Hone DW; Jennings R; Benton MJ (2008) Dinosaurs and the Cretaceous Terrestrial Revolution. <i>Proceedings of the Royal Society B: Biological Sciences</i>, <b>275</b> (1650), pp. 2483-2490. <a href="http://dx.doi.org/10.1098/rspb.2008.0715"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lloyd GT; Pearson PN; Young JR; Smith AB (2012) Sampling bias and the fossil record of planktonic foraminifera on land and in the deep sea. <i>Paleobiology</i>, <b>38</b> (04), pp. 569-584. <a href="http://dx.doi.org/10.1666/11041.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lloyd GT; Smith AB; Young JR (2011) Quantifying the deep-sea rock and fossil record bias using coccolithophores. <i>Geological Society, London, Special Publications</i>, <b>358</b> (1), pp. 167-177. <a href="http://dx.doi.org/10.1144/SP358.11"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lloyd GT; Wang SC; Brusatte SL (2012) IDENTIFYING HETEROGENEITY IN RATES OF MORPHOLOGICAL EVOLUTION: DISCRETE CHARACTER CHANGE IN THE EVOLUTION OF LUNGFISH (SARCOPTERYGII; DIPNOI). <i>Evolution</i>, <b>66</b> (2), pp. 330-348. <a href="http://dx.doi.org/10.1111/j.1558-5646.2011.01460.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lloyd GT; Young JR; Smith AB (2012) Taxonomic Structure of the Fossil Record is Shaped by Sampling Bias. <i>Systematic Biology</i>, <b>61</b> (1), pp. 80-80. <a href="http://dx.doi.org/10.1093/sysbio/syr076"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lloyd GT; Young JR; Smith AB (2012) Comparative quality and fidelity of deep-sea and land-based nannofossil records. <i>Geology</i>, <b>40</b> (2), pp. 155-158. <a href="http://dx.doi.org/10.1130/G32561.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lorenzen ED; Nogues-Bravo D; Orlando L; Weinstock J; Binladen J; Marske KA; Ugan A; Borregaard MK; Gilbert MTP; Nielsen R (2011) Species-specific responses of Late Quaternary megafauna to climate and humans. <i>Nature</i>, . <a href="http://dx.doi.org/10.1038/nature10574"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Flecker R; Valdes PJ; Salzmann U; Gladstone R; Haywood AM (2008) A methodology for targeting palaeo proxy data acquisition: A case study for the terrestrial late Miocene. <i>EARTH PLANET SC LETT</i>, <b>271</b> (1-4), pp. 53-62. <a href="http://dx.doi.org/10.1016/j.epsl.2008.03.035"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Foster GL; Haywood AM; Stone EJ (2008) Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. <i>NATURE</i>, <b>454</b> (7208), pp. 1102-U41. <a href="http://dx.doi.org/10.1038/nature07223"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Haywood AM; Foster GL; Stone EJ (2009) The Arctic cryosphere in the Mid-Pliocene and the future. <i>PHILOS T R SOC A</i>, <b>367</b> (1886), pp. 49-67. <a href="http://dx.doi.org/10.1098/rsta.2008.0218"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Haywood AM; Schmidt GA; Salzmann U; Valdes PJ; Dowsett HJ (2010) Earth system sensitivity inferred from Pliocene modelling and data. <i>NAT GEOSCI</i>, <b>3</b> (1), pp. 60-64. <a href="http://dx.doi.org/10.1038/NGEO706"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Haywood AM; Schmidt GA; Salzmann U; Valdes PJ; Dowsett HJ (2012) On the causes of mid-Pliocene warmth and polar amplification. <i>Earth and Planetary Science Letters</i>, <b>321-322</b> , pp. 128-138. <a href="http://dx.doi.org/10.1016/j.epsl.2011.12.042"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/88182/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Lunt DJ; Ridgwell A; Sluijs A; Zachos J; Hunter S; Haywood AM (2011) A model for orbital pacing of methane hydrate destabilization during the Palaeogene. <i>Nature Geoscience</i>, . <a href="http://dx.doi.org/10.1038/ngeo1266"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Valdes PJ; Dunkley Jones T; Ridgwell A; Haywood AM; Schmidt DN; Marsh R; Maslin M (2010) CO2-driven ocean circulation changes as an amplifier of Paleocene-Eocene thermal maximum hydrate destabilization. <i>GEOLOGY</i>, <b>38</b> (10), pp. 875-878. <a href="http://dx.doi.org/10.1130/G31184.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Lunt DJ; Valdes PJ; Haywood A; Rutt IC (2008) Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation. <i>CLIM DYNAM</i>, <b>30</b> (1), pp. 1-18. <a href="http://dx.doi.org/10.1007/s00382-007-0265-6"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Luo G-M; Lai X-L; Feng Q-L; Jiang H-S; Wignall P; Zhang K-X; Sun Y-D; Wu J (2008) End-Permian conodont fauna from Dongpan section: Correlation between the deep- and shallow-water facies. <i>Science in China Series D: Earth Sciences</i>, <b>51</b> (11), pp. 1611-1622.
Luo GM; Huang JH; Xie SC; Wignall PB; Tang XY; Huang XY; Yin HF (2010) Relationships between carbon isotope evolution and variation of microbes during the Permian-Triassic transition at Meishan Section, South China. <i>INT J EARTH SCI</i>, <b>99</b> (4), pp. 775-784. <a href="http://dx.doi.org/10.1007/s00531-009-0421-9"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Luo GM; Lai XL; Shi GR; Jiang HS; Yin HF; Xie SC; Tong JN; Zhang KX; He WH; Wignall PB (2008) Size variation of conodont elements of the Hindeodus-Isarcicella clade during the Permian-Triassic transition in South China and its implication for mass extinction. <i>PALAEOGEOGR PALAEOCL</i>, <b>264</b> (1-2), pp. 176-187. <a href="http://dx.doi.org/10.1016/j.palaeo.2008.04.015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Macdonald HA; Peakall J; Wignall PB; Best J (2011) Sedimentation in deep-sea lobe-elements: implications for the origin of thickening-upward sequences. <i>J GEOL SOC LONDON</i>, <b>168</b> (2), pp. 319-331. <a href="http://dx.doi.org/10.1144/0016-76492010-036"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Maerz C; Poulton SW; Beckmann B; Küster K; Wagner T; Kasten S (2008) Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters. <i>Geochimica et Cosmochimica Acta</i>, <b>72</b> (15), pp. 3703-3717. <a href="http://dx.doi.org/10.1016/j.gca.2008.04.025"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Maerz C; Poulton SW; Brumsack H-J; Wagner T (2012) Climate-controlled variability of iron deposition in the Central Arctic Ocean (southern Mendeleev Ridge) over the last 130,000 years. <i>Chemical Geology</i>, <b>330</b> , pp. 116-126. <a href="http://dx.doi.org/10.1016/j.chemgeo.2012.08.015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Maginn EJ; Little CTS; Herrington RJ; Mills RA (2002) Sulphide mineralisation in the deep sea, hydrothermal vent polychaete, Alvinella pompejana: implications for fossil preservation. <i>MAR GEOL</i>, <b>181</b> (4), pp. 337-356. <a href="http://eprints.whiterose.ac.uk/281/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Martin; RE; Vermeij GJ; Dorritie; D; Caldeira; K; Rampino; MR; Knoll AH; Bambach RK; Canfield D; Grotzinger; JP; Wignall PB (1996) Late Permian Extinctions. <i>Science</i>, <b>274</b> (5292), pp. 1549-1552. <a href="http://dx.doi.org/10.1126/science.274.5292.1549"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Matamoros-Veloza A; Newton RJ; Benning LG (2011) What controls selenium release during shale weathering?. <i>Applied Geochemistry</i>, <b>26</b> (Supplement), pp. S222-S226. <a href="http://dx.doi.org/10.1016/j.apgeochem.2011.03.109"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/99192/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
MAYNARD JR; WIGNALL PB; VARKER WJ (1991) A ‘hot’ new shale facies from the Upper Carboniferous of Northern England. <i>Journal of the Geological Society</i>, <b>148</b> (5), pp. 805-808. <a href="http://dx.doi.org/10.1144/gsjgs.148.5.0805"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
McArthur JM; Wignall PB (2007) Comment on "Non-uniqueness and interpretation of the seawater Sr-87/Sr-86 curve" by Dave Waltham and Darren R. Grocke (GCA, 70, 2006, 384-394). <i>GEOCHIM COSMOCHIM AC</i>, <b>71</b> (13), pp. 3382-3386. <a href="http://dx.doi.org/10.1016/j.gca.2006.10.026"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
McCarthy MDB; Newton RJ; Bottrell SH (1998) Oxygen isotopic compositions of sulphate from coals: implications for primary sulphate sources and secondary weathering processes. <i>Fuel</i>, <b>77</b> , pp. 677-682.
McClymont EL; Ganeshram RS; Pichevin LE; Talbot HM; van Dongen BE; Thunell RC; Haywood AM; Singarayer JS; Valdes PJ (2012) Sea-surface temperature records of Termination 1 in the Gulf of California: Challenges for seasonal and interannual analogues of tropical Pacific climate change. <i>PALEOCEANOGRAPHY</i>, <b>27</b> , ARTN PA2202. <a href="http://dx.doi.org/10.1029/2011PA002226"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Mills B; Watson AJ; Goldblatt C; Boyle R; Lenton TM (2011) Timing of Neoproterozoic glaciations linked to transport-limited global weathering. <i>Nature Geoscience</i>, <b>4</b> (12), pp. 861-864. <a href="http://dx.doi.org/10.1038/ngeo1305"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/90313/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Moon EM; Peacock CL (2011) Adsorption of Cu(II) to Bacillus subtilis: A pH-dependent EXAFS and thermodynamic modelling study. <i>Geochimica et Cosmochimica Acta</i>, <b>75</b> , pp. 6705-6719. <a href="http://dx.doi.org/10.1016/j.gca.2011.08.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Moon EM; Peacock CL (2012) Adsorption of Cu(II) to ferrihydrite and ferrihydrite-bacteria composites: Importance of the carboxyl group for Cu mobility in natural environments. <i>Geochimica et Cosmochimica Acta</i>, <b>92</b> , pp. 203-219. <a href="http://dx.doi.org/10.1016/j.gca.2012.06.012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Mortimer RJG; Galsworthy AMJ; Bottrell SH; Wilmot LE; Newton RJ (2011) Experimental evidence for rapid biotic and abiotic reduction of Fe (III) at low temperatures in salt marsh sediments: a possible mechanism for formation of modern sedimentary siderite concretions. <i>Sedimentology</i>, <b>58</b> (6), pp. 1514-1529. <a href="http://dx.doi.org/10.1111/j.1365-3091.2011.01224.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76708/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
März C; Beckmann B; Franke C; Vogt C; Wagner T; Kasten S (2009) Geochemical environment of the Coniacian–Santonian western tropical Atlantic at Demerara Rise. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>273</b> (3-4), pp. 286-301. <a href="http://dx.doi.org/10.1016/j.palaeo.2008.05.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
März C; Hoffmann J; Bleil U; de Lange GJ; Kasten S (2008) Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambezi deep-sea fan (SW Indian Ocean). <i>Marine Geology</i>, <b>255</b> (3-4), pp. 118-130. <a href="http://dx.doi.org/10.1016/j.margeo.2008.05.013"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
März C; Schnetger B; Brumsack H-J (2010) Paleoenvironmental implications of Cenozoic sediments from the central Arctic Ocean (IODP Expedition 302) using inorganic geochemistry. <i>Paleoceanography</i>, <b>25</b> (3). <a href="http://dx.doi.org/10.1029/2009PA001860"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
März C; Stratmann A; Matthiessen J; Meinhardt A-K; Eckert S; Schnetger B; Vogt C; Stein R; Brumsack H-J (2011) Manganese-rich brown layers in Arctic Ocean sediments: Composition, formation mechanisms, and diagenetic overprint. <i>Geochimica et Cosmochimica Acta</i>, <b>75</b> (23), pp. 7668-7687. <a href="http://dx.doi.org/10.1016/j.gca.2011.09.046"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
März C; Vogt C; Schnetger B; Brumsack H-J (2011) Variable Eocene-Miocene sedimentation processes and bottom water redox conditions in the Central Arctic Ocean (IODP Expedition 302). <i>Earth and Planetary Science Letters</i>, <b>310</b> (3-4), pp. 526-537. <a href="http://dx.doi.org/10.1016/j.epsl.2011.08.025"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Newton R; Bottrell S (2007) Stable isotopes of carbon and sulphur as indicators of environmental change: past and present. <i>Journal of the Geological Society</i>, <b>164</b> (4), pp. 691-708. <a href="http://dx.doi.org/10.1144/0016-76492006-101"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Newton RJ; Bottrell SH (2007) Stable isotopes of carbon and sulphur as indicators of environmental change:. <i>Journal of the Geological Society</i>, <b>164</b> (4), pp. 691-708. <a href="http://dx.doi.org/10.1144/0016-76492006-101"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Newton RJ; Bottrell SH; Dean SP; Hatfield D; Raiswell R (1995) An evaluation of the use of the chromous chloride reduction method for isotopic analyses of pyrite in rocks and sediment. <i>Chemical Geology</i>, <b>125</b> (3-4), pp. 317-320. <a href="http://dx.doi.org/10.1016/0009-2541(95)00098-7"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Newton RJ; Bottrell SH; Louie PKK; Hawthorne SB; Timpe RC (1996) Coal-specific systematic errors in estimation of pyritic and organic forms of sulfur by ASTM and BS methods. <i>Fuel</i>, <b>75</b> , pp. 1251-1254.
Newton RJ; Pevitt EL; Wignall PB; Bottrell SH (2004) Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy. <i>EARTH PLANET SC LETT</i>, <b>218</b> (3-4), pp. 331-345. <a href="http://dx.doi.org/10.1016/S0012-821X(03)00676-9"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Newton RJ; Reeves EP; Kafousia N; Wignall PB; Bottrell SH; Sha J (2011) Low marine sulfate concentrations and the isolation of the European epicontinental sea during the Early Jurassic. <i>Geology</i>, <b>39</b> (1), pp. 7-10. <a href="http://dx.doi.org/10.1130/g31326.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Novak M; Vile MA; Bottrell SH; Stepanova M; Jackova I; Buzek F; Prechova E; Newton RJ (2005) Isotope systematics of sulfate-oxygen and sulfate-sulfur in six European peatlands. <i>BIOGEOCHEMISTRY</i>, <b>76</b> (2), pp. 187-213. <a href="http://dx.doi.org/10.1007/s10533-005-4433-7"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Nuzzo M; Hornibrook ERC; Gill F; Hensen C; Pancost RD; Haeckel M; Reitz A; Scholz F; Magalhaes VH; Bruckmann W (2009) Origin of light volatile hydrocarbon gases in mud volcano fluids, Gulf of Cadiz - Evidence for multiple sources and transport mechanisms in active sedimentary wedges. <i>CHEM GEOL</i>, <b>266</b> (3-4), pp. 350-363. <a href="http://dx.doi.org/10.1016/j.chemgeo.2009.06.023"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Nuzzo M; Hornibrook ERC; Gill F; Hensen C; Pancost RD; Haeckel M; Reitz A; Scholz F; Magalhães VH; Brückmann W (2009) Origin of light volatile hydrocarbon gases in mud volcano fluids, Gulf of Cadiz - Evidence for multiple sources and transport mechanisms in active sedimentary wedges. <i>Chemical Geology</i>, <b>266</b> (3-4), pp. 350-363. <a href="http://dx.doi.org/10.1016/j.chemgeo.2009.06.023"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Pancost RD; Aquilina A; Talbot HM; Lim K; Evershed RP; Bull ID; Gill F; Weijers J; Collinson ME; Taylor K (2010) Biomarkers for methane cycling: From marine to terrestrial settings. <i>GEOCHIMICA ET COSMOCHIMICA ACTA</i>, <b>74</b> (12), pp. A787-A787.
Peacock CL (2009) Physiochemical controls on the crystal-chemistry of Ni in birnessite: Genetic implications for ferromanganese precipitates. <i>GEOCHIM COSMOCHIM AC</i>, <b>73</b> (12), pp. 3568-3578. <a href="http://dx.doi.org/10.1016/j.gca.2009.03.020"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Peacock CL; Moon EM (2012) Oxidative scavenging of thallium by birnessite: Explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates. <i>Geochimica et Cosmochimica Acta</i>, <b>84</b> , pp. 297-313. <a href="http://dx.doi.org/10.1016/j.gca.2012.01.036"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Peacock CL; Sherman DM (2005) Surface complexation model for multisite adsorption of copper(II) onto kaolinite. <i>GEOCHIM COSMOCHIM AC</i>, <b>69</b> (15), pp. 3733-3745. <a href="http://dx.doi.org/10.1016/j.gca.2004.12.029"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Peacock CL; Sherman DM (2005) Erratum: "Copper(II) sorption onto goethite, hematite, and lepidocrocite: A surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy" (Geochimica et Cosmochimica Acta (2004) vol. 68 (2623-2637)). <i>Geochimica et Cosmochimica Acta</i>, <b>69</b> (21), pp. 5141-5142. <a href="http://dx.doi.org/10.1016/j.gca.2005.02.020"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Peacock CL; Sherman DM (2007) Sorption of Ni by birnessite: Equilibrium controls on Ni in seawater. <i>CHEM GEOL</i>, <b>238</b> (1-2), pp. 94-106. <a href="http://dx.doi.org/10.1016/j.chemgeo.2006.10.019"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Peacock CL; Sherman DM (2004) Copper(II) sorption onto goethite, hematite and lepidocrocite: A surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. <i>GEOCHIM COSMOCHIM AC</i>, <b>68</b> (12), pp. 2623-2637. <a href="http://dx.doi.org/10.1016/j.gca.2003.11.030"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Peacock CL; Sherman DM (2007) Crystal-chemistry of Ni in marine ferromanganese crusts and nodules. <i>AM MINERAL</i>, <b>92</b> (7), pp. 1087-1092. <a href="http://dx.doi.org/10.2138/am.2007.2378"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Peacock CL; Sherman DM (2002) Vanadium (III, IV and V) sorption onto goethite alpha-FeOOH. <i>GEOCHIM COSMOCHIM AC</i>, <b>66</b> (15A), pp. A583-A583.
Peacock CL; Sherman DM (2005) Copper(II) sorption onto goethite, hematite, and lepidocrocite: A surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy (vol 68, pg 2623, 2004). <i>GEOCHIM COSMOCHIM AC</i>, <b>69</b> (21), pp. 5141-5142. <a href="http://dx.doi.org/10.1016/j.gca.2005.02.020"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Peacock CL; Sherman DM (2004) Vanadium(V) adsorption onto goethite (alpha-FeOOH) at pH 1.5 to 12: A surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. <i>GEOCHIM COSMOCHIM AC</i>, <b>68</b> (8), pp. 1723-1733. <a href="http://dx.doi.org/10.1016/j.gca.2003.10.018"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Peate IU; Bryan SE; Wignall PB; Jerram DA; Ali JR (2011) Comment on 'Paleokarst on the top of the Maokou Formation: Further evidence for domal crustal uplift prior to the Emeishan flood volcanism'. <i>LITHOS</i>, <b>125</b> (3-4), pp. 1006-1008. <a href="http://dx.doi.org/10.1016/j.lithos.2011.03.021"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Peckmann J; Little CTS; Gill F; Reitner J (2005) Worm tube fossils from the Hollard Mound hydrocarbon-seep deposit, Middle Devonian, Morocco: Palaeozoic seep-related vestimentiferans?. <i>PALAEOGEOGR PALAEOCL</i>, <b>227</b> (1-3), pp. 242-257. <a href="http://dx.doi.org/10.1016/j.palaeo.2005.04.021"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/43147/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Planavsky NJ; Rouxel OJ; Bekker A; Hoffman A; Little CTS; Lyons TW (2012) The iron isotope composition of some Archean and Proterozoic iron formations. <i>Geochimica et Cosmochimica Acta</i>, <b>80</b> , pp. 158-169. <a href="http://dx.doi.org/10.1016/j.gca.2011.12.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Platt NH; Burns SJ; Platt JD; Wignall PB (1991) Organic-rich deposits from the Callovian of the Sierra de la Demanda, northern Spain. <i>Eclogae Geologicae Helvetiae</i>, <b>84</b> (2), pp. 483-508.
Pope JO; Collins M; Haywood AM; Dowsett HJ; Hunter SJ; Lunt DJ; Pickering SJ; Pound MJ (2011) Quantifying Uncertainty in Model Predictions for the Pliocene (Plio-QUMP): Initial Results. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>309</b> (1-2), pp. 128-140. <a href="http://dx.doi.org/10.1016/j.palaeo.2011.05.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Poulson Brucker RL; McManus J; Poulton SW (2012) Molybdenum isotope fractionations observed under anoxic experimental conditions. <i>Geochemical Journal</i>, <b>46</b> , pp. 201-209.
Poulton SW (2003) Sulfide oxidation and iron dissolution kinetics during the reaction of dissolved sulfide with ferrihydrite. <i>Chemical Geology</i>, <b>202</b> (1-2), pp. 79-94. <a href="http://dx.doi.org/10.1016/S0009-2541(03)00237-7"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Poulton SW; Bottrell SH; Underwood CJ (1998) Porewater sulphur geochemistry and fossil preservation during phosphate diagenesis in a Lower Cretaceous shelf mudstone. <i>Sedimentology</i>, <b>45</b> , pp. 875-887.
Poulton SW; Canfeld DE (2011) Ferruginous conditions: A dominant feature of the ocean through Earth's history. <i>Elements</i>, <b>7</b> (2), pp. 107-112. <a href="http://dx.doi.org/10.2113/gselements.7.2.107"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Poulton SW; Canfield DE (2005) Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates. <i>Chemical Geology</i>, <b>214</b> (3-4), pp. 209-221. <a href="http://dx.doi.org/10.1016/j.chemgeo.2004.09.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Poulton SW; Canfield DE (2006) Co-diagenesis of iron and phosphorus in hydrothermal sediments from the southern East Pacific Rise: Implications for the evaluation of paleoseawater phosphate concentrations. <i>Geochimica et Cosmochimica Acta</i>, <b>70</b> (23 SPEC. ISS.), pp. 5883-5898. <a href="http://dx.doi.org/10.1016/j.gca.2006.01.030"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Poulton SW; Fralick PW; Canfield DE (2004) The transition to a sulphidic ocean approximately 1.84 billion years ago. <i>Nature</i>, <b>431</b> (7005), pp. 173-177. <a href="http://dx.doi.org/10.1038/nature02912"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Poulton SW; Fralick PW; Canfield DE (2010) Spatial variability in oceanic redox structure 1.8 billion years ago. <i>Nature Geoscience</i>, <b>3</b> (7), pp. 486-490. <a href="http://dx.doi.org/10.1038/ngeo889"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Poulton SW; Krom MD; Raiswell R (2004) A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. <i>Geochimica et Cosmochimica Acta</i>, <b>68</b> (18), pp. 3703-3715. <a href="http://dx.doi.org/10.1016/j.gca.2004.03.012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/466/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Poulton SW; Krom MD; Van Rijn J; Raiswell R (2002) The use of hydrous iron (III) oxides for the removal of hydrogen sulphide from aqueous systems. <i>Water Research</i>, <b>36</b> (4), pp. 825-834. <a href="http://dx.doi.org/10.1016/S0043-1354(01)00314-1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Poulton SW; Krom MD; Van Rijn J; Raiswell R; Bows R (2003) Detection and Removal of Dissolved Hydrogen Sulphide in Flow-Through Systems Via the Sulphidation of Hydrous Iron (III) Oxides. <i>Environmental Technology</i>, <b>24</b> (2), pp. 217-230.
Poulton SW; Raiswell R (2005) Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments. <i>Chemical Geology</i>, <b>218</b> (3-4), pp. 203-221. <a href="http://dx.doi.org/10.1016/j.chemgeo.2005.01.007"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Poulton SW; Raiswell R (2002) The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition. <i>American Journal of Science</i>, <b>302</b> (9), pp. 774-805. <a href="http://dx.doi.org/10.2475/ajs.302.9.774"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/334/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Poulton SW; Raiswell R (2000) Solid phase associations, oceanic fluxes and the anthropogenic perturbation of transition metals in world river particulates. <i>Marine Chemistry</i>, <b>72</b> , pp. 17-31.
Pound MJ; Haywood AM; Salzmann U; Riding JB (2011) A Tortonian (Late Miocene, 11.61-7.25 Ma) global vegetation reconstruction. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>300</b> , pp. 29-45. <a href="http://dx.doi.org/10.1016/j.palaeo.2010.11.029"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Pound MJ; Haywood AM; Salzmann U; Riding JB (2012) Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97-5.33 Ma). <i>EARTH-SCIENCE REVIEWS</i>, <b>112</b> (1-2), pp. 1-22. <a href="http://dx.doi.org/10.1016/j.earscirev.2012.02.005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Pound MJ; Haywood AM; Salzmann U; Riding JB; Lunt DJ; Hunter SJ (2011) A Tortonian (Late Miocene, 11.61-7.25 Ma) global vegetation reconstruction. <i>Palaeogeography Palaeoclimatology Palaeoecology</i>, <b>300</b> , pp. 29-45. <a href="http://dx.doi.org/10.1016/j.palaeo.2010.11.029"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Preto N; Kustatscher E; Wignall PB (2010) Triassic climates - State of the art and perspectives. <i>PALAEOGEOGR PALAEOCL</i>, <b>290</b> (1-4), pp. 1-10. <a href="http://dx.doi.org/10.1016/j.palaeo.2010.03.015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Racki G; Piechota A; Bond D; Wignall PB (2004) Geochemical and ecological aspects of lower Frasnian pyrite-ammonoid level at Kostomloty (Holy Cross Mountains, Poland). <i>GEOL Q</i>, <b>48</b> (3), pp. 267-282. <a href="http://eprints.whiterose.ac.uk/346/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Racki G; Wignall P (2004) Comment on: Orbital cyclostratigraphy of the Devonian Frasnian–Famennian transition in South China, by Gong, Y.M. Li, B.H. Wang, Y. Wu, Y. Palaeogeogr. Palaeoclimatol. Palaeoecol. 168 (2001), 237–248. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>205</b> (1-2), pp. 169-170. <a href="http://dx.doi.org/10.1016/j.palaeo.2003.11.015"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Racki G; Wignall PB (2001) Eutrophication by decoupling of the marine biogeochemical cycles of C, N, adn P: a mechanism for the Late Devonian mass extinction: comment. <i>Geology</i>, <b>29</b> , pp. pp.469. <a href="http://dx.doi.org/10.1130/0091-7613(2001)029<0469:EBDOTM>2.0.CO;2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Racki G; Wignall PB (2005) Chapter 10 late permian double-phased mass extinction and volcanism: an oceanographic perspective. <i>Developments in Palaeontology and Stratigraphy</i>, <b>20</b> (C), pp. 263-297. <a href="http://dx.doi.org/10.1016/S0920-5446(05)80010-X"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Raiswell R; Newton R; Wignall PB (2001) An indicator of water-column anoxia: Resolution of biofacies variations in the Kimmeridge Clay (Upper Jurassic, UK). <i>J SEDIMENT RES</i>, <b>71</b> (2), pp. 286-294.
Raiswell R; Newton RJ; Bottrell SH; Coburn PM; Briggs DEG; Bond DPG; Poulton SW (2008) Turbidite depositional influences on the diagenesis of Beecher's Trilobite Bed and the Hunsruck Slate; sites of soft tissue pyritization. <i>American Journal of Science</i>, <b>308</b> , pp. 105-129. <a href="http://dx.doi.org/10.2475/02.2008.01"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Richoz S; Van De Schootbrugge B; Pross J; Püttmann W; Quan TM; Lindström S; Heunisch C; Fiebig J; Maquil R; Schouten S (2012) Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. <i>Nature Geoscience</i>, <b>5</b> (9), pp. 662-667. <a href="http://dx.doi.org/10.1038/ngeo1539"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Robinson MM; Valdes PJ; Haywood AM; Dowsett HJ; Hill DJ; Jones SM (2011) Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production. <i>Palaeogeography Palaeoclimatology Palaeoecology</i>, <b>309</b> (1-2), pp. 92-97. <a href="http://dx.doi.org/10.1016/j.palaeo.2011.01.004"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Ruffell A; Wignall P (1991) Reply to Cox et al. and Moorlock. <i>Proceedings of the Geologists' Association</i>, <b>102</b> (2), pp. 149-152. <a href="http://dx.doi.org/10.1016/S0016-7878(08)80076-4"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Ruffell AH; Wignall PB (1990) Depositional trends in the Upper Jurassic-Lower Cretaceous of the northern margin of the Wessex Basin. <i>Proceedings of the Geologists' Association</i>, <b>101</b> (4), pp. 279-288. <a href="http://dx.doi.org/10.1016/S0016-7878(08)80162-9"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Ruta M; Pisani D; Lloyd GT; Benton MJ (2007) A supertree of Temnospondyli: cladogenetic patterns in the most species-rich group of early tetrapods. <i>Proceedings of the Royal Society B: Biological Sciences</i>, <b>274</b> (1629), pp. 3087-3095. <a href="http://dx.doi.org/10.1098/rspb.2007.1250"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Saether KP; Little CTS; Campbell KA (2010) A new fossil provannid gastropod from Miocene hydrocarbon seep deposits, East Coast Basin, North Island, New Zealand. <i>Acta Palaeontologica Polonica</i>, <b>55</b> (3), pp. 507-517. <a href="http://dx.doi.org/10.4202/app.2009.1112"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/76705/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Saether KP; Little CTS; Campbell KA; Marshall BA; Collins M; Alfaro AC (2010) New fossil mussels (Bivalvia: Mytilidae) from Miocene hydrocarbon seep deposits, North Island, New Zealand, with general remarks on vent and seep mussels. <i>Zootaxa</i>, <b>2577</b> , pp. 1-45. <a href="http://eprints.whiterose.ac.uk/42685/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Saether KP; Little CTS; Marshall BA; Campbell KA (2012) Systematics and palaeoecology of a new fossil limpet (Patellogastropoda: Pectinodontidae) from Miocene hydrocarbon seep deposits, East Coast Basin, North Island, New Zealand with an overview of known fossil seep pectinodontids. <i>MOLLUSCAN RESEARCH</i>, <b>32</b> (1), pp. 1-15.
Saether KP; Little CTS; Marshall BA; Campbell KA (2012) New fossil limpet (Patellogastropoda: Pectinodontidae) from Miocene hydrocarbon seep deposits, East Coast Basin, North Island, New Zealand: systematics and palaeoecology. <i>Molluscan Research</i>, <b>32</b> (1), pp. 1-15.
SAKAMOTO M; LLOYD GT; BENTON MJ (2010) Phylogenetically structured variance in felid bite force: the role of phylogeny in the evolution of biting performance. <i>Journal of Evolutionary Biology</i>, <b>23</b> (3), pp. 463-478. <a href="http://dx.doi.org/10.1111/j.1420-9101.2009.01922.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Salzmann U; Haywood AM; Lunt DJ (2009) The past is a guide to the future? Comparing Middle Pliocene vegetation with predicted biome distributions for the twenty-first century. <i>PHILOS T R SOC A</i>, <b>367</b> (1886), pp. 189-204. <a href="http://dx.doi.org/10.1098/rsta.2008.0200"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Salzmann U; Haywood AM; Lunt DJ; Valdes PJ; Hill DJ (2008) A new global biome reconstruction and data-model comparison for the Middle Pliocene. <i>GLOBAL ECOL BIOGEOGR</i>, <b>17</b> (3), pp. 432-447. <a href="http://dx.doi.org/10.1111/j.1466-8238.2008.00381.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Salzmann U; Williams M; Haywood AM; Johnson AAL; Kender S; Zalasiewicz J (2011) The climate and environment of a Pliocene warm world. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>309</b> (1-2), pp. 1-8. <a href="http://dx.doi.org/10.1016/j.palaeo.2011.05.044"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Scott C; Lyons TW; Bekker A; Shen Y; Poulton SW; Chu X; Anbar AD (2008) Tracing the stepwise oxygenation of the Proterozoic ocean. <i>Nature</i>, <b>452</b> (7186), pp. 456-459. <a href="http://dx.doi.org/10.1038/nature06811"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Scroxton N; Bonham SJ; Rickaby REM; Lawrence SHF; Hermoso M; Haywood AM (2011) Persistent El Niño-Southern Oscillation variation during the Pliocene Epoch. <i>Paleoceanography</i>, <b>26</b> (PA2215). <a href="http://dx.doi.org/10.1029/2010PA002097"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Sephton MA; Amor K; Franchi IA; Wignall PB; Newton R; Zonneveld JP (2002) Carbon and nitrogen isotope disturbances and an end-Norian (Late Triassic) extinction event. <i>GEOLOGY</i>, <b>30</b> (12), pp. 1119-1122.
Sephton MA; Looy CV; Brinkhuis H; Wignall PB; de Leeuw JW; Visscher H (2005) Catastrophic soil erosion during the end-Permian biotic crisis. <i>GEOLOGY</i>, <b>33</b> (12), pp. 941-944. <a href="http://dx.doi.org/10.1130/G2178.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Sherman DM; Peacock CL (2010) Surface complexation of Cu on birnessite (δ-MnO <inf>2</inf> ): Controls on Cu in the deep ocean. <i>Geochimica et Cosmochimica Acta</i>, <b>74</b> (23), pp. 6721-6730. <a href="http://dx.doi.org/10.1016/j.gca.2010.08.042"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Sherman DM; Peacock CL; Hubbard CG (2008) Surface complexation of U(VI) on goethite (alpha-FeOOH). <i>GEOCHIM COSMOCHIM AC</i>, <b>72</b> (2), pp. 298-310. <a href="http://dx.doi.org/10.1016/j.gca.2007.10.023"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Simms MJ; Little CTS; Rosen BR (2002) Corals not serpulids: mineralized colonial fossils in the Lower Jurassic marginal facies of South Wales. <i>Proceedings of the Geologists' Association</i>, <b>113</b> (1), pp. 31-36. <a href="http://eprints.whiterose.ac.uk/286/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Smellie JL; Haywood AM; Hillenbrand CD; Lunt DJ; Valdes PJ (2009) Nature of the Antarctic Peninsula Ice Sheet during the Pliocene: Geological evidence and modelling results compared. <i>EARTH-SCI REV</i>, <b>94</b> (1-4), pp. 79-94. <a href="http://dx.doi.org/10.1016/j.earscirev.2009.03.005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Smith AB; Lloyd GT; McGowan AJ (2012) Phanerozoic marine diversity: rock record modelling provides an independent test of large-scale trends. <i>Proceedings of the Royal Society B: Biological Sciences</i>, <b>279</b> (1746), pp. 4489-4495. <a href="http://dx.doi.org/10.1098/rspb.2012.1793"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Song H; Wignall PB; Tong J; Bond DPG; Song H; Lai X; Zhang K; Wang H; Chen Y (2012) Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with end-Permian extinction and recovery. <i>Earth and Planetary Science Letters</i>, <b>353-354</b> , pp. 12-21. <a href="http://dx.doi.org/10.1016/j.epsl.2012.07.005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Song HJ; Wignall PB; Chen ZQ; Tong JN; Bond DPG; Lai XL; Zhao XM; Jiang HS; Yan CB; Niu ZJ (2011) Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. <i>GEOLOGY</i>, <b>39</b> (8), pp. 739-742. <a href="http://dx.doi.org/10.1130/G32191.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Sun Y; Joachimski MM; Wignall PB; Yan C; Chen Y; Jiang H; Wang L; Lai X (2012) Lethally hot temperatures during the Early Triassic greenhouse. <i>Science</i>, <b>338</b> (6105), pp. 366-370. <a href="http://dx.doi.org/10.1126/science.1224126"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/77504/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Sun YD; Lai XL; Jiang HS; Luo GM; Sun S; Yan CB; Wignall PB (2008) Guadalupian (Middle Permian) Conodont Faunas at Shangsi Section, Northeast Sichuan Province. <i>J CHINA UNIV GEOSCI</i>, <b>19</b> (5), pp. 451-460.
Sun YD; Lai XL; Wignall PB; Widdowson M; Ali JR; Jiang HS; Wang W; Yan CB; Bond DPG; Vedrine S (2010) Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models. <i>LITHOS</i>, <b>119</b> (1-2), pp. 20-33. <a href="http://dx.doi.org/10.1016/j.lithos.2010.05.012"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Taylor SP; Haywood AM; Valdes PJ; Sellwood BW (2004) An evaluation of two spatial interpolation techniques in global sea-surface temperature reconstructions: Last Glacial Maximum and Pliocene case studies. <i>Quaternary Science Reviews</i>, <b>23</b> (9-10), pp. 1041-1051. <a href="http://dx.doi.org/10.1016/j.quascirev.2003.12.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Turner N; Spinner E; Spode F; Wignall PB (1994) Palynostratigraphy of a Carboniferous transgressive systems tract from the earliest Alportian (Namurian) of Britain. <i>Review of Palaeobotany and Palynology</i>, <b>80</b> (1-2), pp. 39-54. <a href="http://dx.doi.org/10.1016/0034-6667(94)90091-4"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Twitchett RJ; Looy CV; Morante R; Visscher H; Wignall PB (2001) Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. <i>Geology</i>, <b>29</b> (4), pp. 351-354. <a href="http://dx.doi.org/10.1130/0091-7613(2001)029<0351:RASCOM>2.0.CO;2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Twitchett RJ; Looy CV; Morante R; Visscher H; Wignall PB (2001) Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. <i>Geology</i>, <b>29</b> (4), pp. 351-354. <a href="http://dx.doi.org/10.1130/0091-7613(2001)?029<0351:RASCOM>?2.0.CO"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Twitchett RJ; Looy CV; Morante R; Visscher H; Wignall PB (2001) Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. <i>GEOLOGY</i>, <b>29</b> (4), pp. 351-354.
Twitchett RJ; Wignall PB (1996) Trace fossils and the aftermath of the Permo-Triassic mass extinction: evidence from northern Italy. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>124</b> , pp. 137-151.
Valero MAC; Mara DD; Newton RJ (2010) Nitrogen removal in maturation waste stabilisation ponds via biological uptake and sedimentation of dead biomass. <i>WATER SCI TECHNOL</i>, <b>61</b> (4), pp. 1027-1034. <a href="http://dx.doi.org/10.2166/wst.2010.952"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/42802/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Valero MAC; Read LF; Mara DD; Newton RJ; Curtis TP; Davenport RJ (2010) Nitrification-denitrification in waste stabilisation ponds: a mechanism for permanent nitrogen removal in maturation ponds. <i>WATER SCI TECHNOL</i>, <b>61</b> (5), pp. 1137-1146. <a href="http://dx.doi.org/10.2166/wst.2010.963"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/42801/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Van Dongen BE; Rowland HAL; Al Lawati WM; Hery M; Gault AG; Lloyd JR; Polya DA; Pancost RD; Gill F; Bryant C (2010) The bioavailability of organic matter as a controlling factor on arsenic release in Asian aquifers. <i>Arsenic in Geosphere and Human Diseases, As 2010 - 3rd International Congress: Arsenic in the Environment</i>, , pp. 132-133.
van Geel B; Guthrie RD; Altmann JG; Broekens P; Bull ID; Gill FL; Jansen B; Nieman AM; Gravendeel B (2011) Mycological evidence of coprophagy from the feces of an Alaskan Late Glacial mammoth. <i>QUATERNARY SCI REV</i>, <b>30</b> (17-18), pp. 2289-2303. <a href="http://dx.doi.org/10.1016/j.quascirev.2010.03.008"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wan XQ; Wignall PB; Zhao WJ (2003) The Cenomanian-Turonian extinction and oceanic anoxic event: evidence from southern Tibet. <i>PALAEOGEOGR PALAEOCL</i>, <b>199</b> (3-4), pp. 283-298. <a href="http://dx.doi.org/10.1016/S0031-0182(03)00543-1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wang H; Shao L; Newton RJ; Bottrell SH; Wignall PB; Large DJ (2012) Records of terrestrial sulfur deposition from the latest Permian coals in SW China. <i>Chemical Geology</i>, <b>292-293</b> , pp. 18-24. <a href="http://dx.doi.org/10.1016/j.chemgeo.2011.11.005"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wang H; Shao LY; Hao LM; Zhang PF; Glasspool IJ; Wheeley JR; Wignall PB; Yi TS; Zhang MQ; Hilton J (2011) Sedimentology and sequence stratigraphy of the Lopingian (Late Permian) coal measures in southwestern China. <i>INT J COAL GEOL</i>, <b>85</b> (1), pp. 168-183. <a href="http://dx.doi.org/10.1016/j.coal.2010.11.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wang H; Shao LY; Large DJ; Wignall PB (2011) Constraints on carbon accumulation rate and net primary production in the Lopingian (Late Permian) tropical peatland in SW China. <i>PALAEOGEOGR PALAEOCL</i>, <b>300</b> (1-4), pp. 152-157. <a href="http://dx.doi.org/10.1016/j.palaeo.2010.12.019"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Waters CN; Maynard JR; Wignall PB (1996) New developments in the Late Carboniferous geology of the central Pennines, northern England: a review. <i>Proceedings of the Yorkshire Geological Society</i>, <b>51</b> , pp. 81-86.
Wierzbowski A; Hryniewicz K; Hammer Ø; Nakrem HA; Little CTS (2011) Ammonites from hydrocarbon seep carbonate bodies from the uppermost Jurassic–lowermost Cretaceous of Spitsbergen, Svalbard, and their biostratigraphic importance. <i>Neues Jahrbuch fur Geologie und Paläontologie – Abhandlungen</i>, <b>262</b> , pp. 267-288. <a href="http://dx.doi.org/10.1127/0077-7749/2011/0198"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall P; Racki G (2009) Mantle plume: The invisible serial killer - Application to the Permian-Triassic boundary mass extinction. Comment. <i>Palaeogeography Palaeoclimatology Palaeoecology</i>, <b>283</b> , pp. 99-101.
Wignall P; Thomas B; Willink R; Watling J; Becker L; Poreda RJ; Pope KO (2004) Is Bedout an impact crater? Take 1 [3] (multiple letters). <i>Science</i>, <b>306</b> (5696), pp. 609-610.
Wignall PB (1992) Anoxia and Mass Extinctions. <i>PALAIOS</i>, <b>7</b> (1), pp. 1-1. <a href="http://dx.doi.org/10.2307/3514793"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB (1991) Test of the concepts of sequence stratigraphy in the Kimmeridgian (Late Jurassic) of England and northern France. <i>Marine and Petroleum Geology</i>, <b>8</b> (4), pp. 430-441. <a href="http://dx.doi.org/10.1016/0264-8172(91)90065-9"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB (2005) UNDERSTANDING LATE DEVONIAN AND PERMIAN-TRIASSIC BIOTIC AND CLIMATIC EVENTS Towards an Integrated Approach Introduction. <i>UNDERSTANDING LATE DEVONIAN AND PERMIAN-TRIASSIC BIOTIC AND CLIMATIC EVENTS: TOWARDS AN INTEGRATED APPROACH</i>, <b>20</b> , pp. 1-3.
Wignall PB (1990) Depositional history and palaeoecology of the Oxfordian/Kimmeridgian boundary beds at South Ferriby, South Humberside. <i>Proceedings of the Yorkshire Geological Society</i>, <b>48</b> (2), pp. 197-208. <a href="http://dx.doi.org/10.1144/pygs.48.2.197"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
WIGNALL PB (1993) Distinguishing between oxygen and substrate control in fossil benthic assemblages. <i>Journal of the Geological Society</i>, <b>150</b> (1), pp. 193-196. <a href="http://dx.doi.org/10.1144/gsjgs.150.1.0193"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB (2000) The end-Triassic mass extinction. <i>Encyclopedia of Life Sciences</i>, .
Wignall PB (2001) Sedimentology of the Triassic-Jurassic boundary beds in Pinhay Bay (Devon, SW England). <i>P GEOLOGIST ASSOC</i>, <b>112</b> , pp. 349-360. <a href="http://eprints.whiterose.ac.uk/475/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wignall PB (1990) Ostracod and Foraminifera Micropaleoecology and Its Bearing on Biostratigraphy: A Case Study from the Kimmeridgian (Late Jurassic) of North West Europe. <i>PALAIOS</i>, <b>5</b> (3), pp. 219-219. <a href="http://dx.doi.org/10.2307/3514940"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB (1994) Black shales. <i>Black shales</i>, .
Wignall PB (2005) The link between large igneous provinces and mass extinctions. <i>Elements</i>, <b>1</b> , pp. 293-297.
Wignall PB (1998) Paleontological events: stratigraphic, ecological and evolutionary implications, Brett, C. and Baird, G. (Editors). <i>Sedimentary Geology</i>, <b>117</b> , pp. 245-246.
Wignall PB (1999) Comment on: Evidence for abrupt latest Permian mass extinction of foraminifera: Results of tests for the Signor-Lipps effect. <i>Geology</i>, <b>27</b> , pp. pp.383.
Wignall PB (2003) The end-Permian mass extinction. <i>Mercian Geologist</i>, <b>15</b> , pp. pp.251.
Wignall PB (2001) Large igneous provinces and mass extinctions. <i>EARTH-SCI REV</i>, <b>53</b> (1-2), pp. 1-33.
Wignall PB (2007) The End-Permian mass extinction - how bad did it get?. <i>GEOBIOLOGY</i>, <b>5</b> (4), pp. 303-309. <a href="http://dx.doi.org/10.1111/j.1472-4669.2007.00130.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB (2002) Review of Yin, H.F. Dickins, J.M. Shi, G.R. and Tong, J. 2000. Permian-Triassic evolution of Tethys and western Circum-Pacific, Elsevier. <i>Earth Science Reviews</i>, <b>57</b> , pp. 341-342.
Wignall PB (1987) A biofacies analysis of the Gastrioceras cumbriense Marine Band ( Namurian) of the central Pennines ( UK). <i>Proceedings - Yorkshire Geological Society</i>, <b>46</b> (2), pp. 111-121.
Wignall PB (2005) Chapter 1Introduction. <i>Developments in Palaeontology and Stratigraphy</i>, <b>20</b> (C), pp. 1-3. <a href="http://dx.doi.org/10.1016/S0920-5446(05)80001-9"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB (1993) The stratigraphy of the upper Kimmeridge Clay (late Jurassic) of Gold Hill, Vale of Pickering, North Yorkshire. <i>Proceedings - Yorkshire Geological Society</i>, <b>49</b> (3), pp. 207-214.
WIGNALL PB (1989) Sedimentary dynamics of the Kimmeridge Clay: tempests and earthquakes. <i>Journal of the Geological Society</i>, <b>146</b> (2), pp. 273-284. <a href="http://dx.doi.org/10.1144/gsjgs.146.2.0273"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB (2011) Earth science: Lethal volcanism. <i>Nature</i>, <b>477</b> (7364), pp. 285-286. <a href="http://dx.doi.org/10.1038/477285a"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB (2010) PALAEONTOLOGY Safer in the south. <i>NAT GEOSCI</i>, <b>3</b> (4), pp. 228-229. <a href="http://dx.doi.org/10.1038/ngeo827"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB (1991) Model for transgressive black shales?. <i>Geology</i>, <b>19</b> (2), pp. 167-167. <a href="http://dx.doi.org/10.1130/0091-7613(1991)019<0167:MFTBS>2.3.CO;2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB (1991) Dysaerobic Trace Fossils and Ichnofabrics in the Upper Jurassic Kimmeridge Clay of Southern England. <i>PALAIOS</i>, <b>6</b> (3), pp. 264-264. <a href="http://dx.doi.org/10.2307/3514906"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Benton MJ (2000) Reply to discussion on Lazarus taxa and fossil abundance at times of biotic crisis. <i>Journal of the Geological Society</i>, <b>157</b> , pp. pp.512.
Wignall PB; Benton MJ (1999) Lazarus taxa and fossil abundance at times of biotic crisis. <i>Journal of the Geological Society</i>, <b>156</b> , pp. 453-456.
Wignall PB; Best JL (2002) Reply to comment on The Western Irish Namurian Basin reassessed: by O.J. Martinsen and J.D. Collinson. <i>Basin Research</i>, <b>14</b> (4), pp. 531-542. <a href="http://eprints.whiterose.ac.uk/498/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wignall PB; Best JL (2000) The Western Irish Namurian Basin reassessed. <i>Basin Research</i>, <b>12</b> (1), pp. 59-78. <a href="http://eprints.whiterose.ac.uk/497/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wignall PB; Best JL (2004) Sedimentology and kinematics of a large, retrogressive growth-fault system in Upper Carboniferous deltaic sediments, western Ireland. <i>SEDIMENTOLOGY</i>, <b>51</b> (6), pp. 1343-1358. <a href="http://dx.doi.org/10.1111/j.1365-3091.2004.00673.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a> <a href="http://eprints.whiterose.ac.uk/499/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
Wignall PB; Bond DPG (2008) The end-Triassic and Early Jurassic mass extinction records in the British Isles. <i>P GEOLOGIST ASSOC</i>, <b>119</b> , pp. 73-84.
Wignall PB; Bond DPG; Kuwahara K; Kakuwa Y; Newton RJ; Poulton SW (2010) An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. <i>Global and Planetary Change</i>, <b>71</b> , pp. 109-123. <a href="http://dx.doi.org/10.1016/j.gloplacha.2010.01.022"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Bond DPG; Newton RJ; Haas J; Hips K; Wang W; Jiang H; Lai X; Sun Y; Altiner D (2012) Capitanian (middle Permian) mass extinction and recovery in western Tethys: A fossil, facies, and δ C study from Hungary and Hydra island (Greece). <i>Palaios</i>, <b>27</b> (2), pp. 78-89. <a href="http://dx.doi.org/10.2110/palo.2011.p11-058r"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Hallam A (1993) Griesbachian (Earliest Triassic) palaeoenvironmental changes in the Salt Range, Pakistan and southeast China and their bearing on the Permo-Triassic mass extinction. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>102</b> (3-4), pp. 215-237. <a href="http://dx.doi.org/10.1016/0031-0182(93)90068-T"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Hallam A (1991) Biofacies, stratigraphic distribution and depositional models of British onshore Jurassic black shales. <i>Geological Society, London, Special Publications</i>, <b>58</b> (1), pp. 291-309. <a href="http://dx.doi.org/10.1144/GSL.SP.1991.058.01.19"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Hallam A (1996) Facies change and the end-Permian mass extinction in S.E. Sichuan, China. <i>Palaios</i>, <b>11</b> , pp. 587-596.
Wignall PB; Hallam A (1991) Biofacies, stratigraphic distribution and depositional models of British onshore Jurassic black shales. <i>Modern and ancient continental shelf anoxia</i>, , pp. 291-309.
Wignall PB; Hallam A (1992) Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>93</b> (1-2), pp. 21-46. <a href="http://dx.doi.org/10.1016/0031-0182(92)90182-5"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Hallam A; Newton RJ; Sha JG; Reeves E; Mattioli E; Crowley S (2006) An eastern Tethyan (Tibetan) record of the Early Jurassic (Toarcian) mass extinction event. <i>GEOBIOLOGY</i>, <b>4</b> (3), pp. 179-190. <a href="http://dx.doi.org/10.1111/j.1472-4669.2006.00081.x"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Hallam A; Xulong L; Fengqing Y (1995) Palaeoenvironmental changes across the Permian/Triassic boundary at Shangsi (N. Sichuan, China). <i>Historical Biology</i>, <b>10</b> (2), pp. 175-189. <a href="http://dx.doi.org/10.1080/10292389509380519"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Kershaw S; Collin PY; Crasquin-Soleau S (2009) Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events: Comment. <i>GEOL SOC AM BULL</i>, <b>121</b> (5-6), pp. 954-956. <a href="http://dx.doi.org/10.1130/B26424.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Kozur H; Hallam A (1996) On the timing of palaeoenvironmental changes at the Permo-Triassic (P/Tr) boundary using conodont biostratigraphy. <i>Historical Biology</i>, <b>12</b> , pp. 39-62.
Wignall PB; Maynard JR (1996) High resolution sequence stratigraphy in the early Marsdenian (Namurian, Carboniferous) of the central Pennines and adjacent areas. <i>Proceedings of the Yorkshire Geological Society</i>, <b>51</b> , pp. 127-140.
Wignall PB; Maynard JR (1993) The sequence stratigraphy of transgressive black shales. <i>Source rocks in a sequence stratigraphic framework</i>, , pp. 35-47.
Wignall PB; McArthur JM; Little CTS; Hallam A (2006) Palaeoceanography - Methane release in the Early Jurassic period. <i>NATURE</i>, <b>441</b> (7093), pp. E5-E5. <a href="http://dx.doi.org/10.1038/nature04905"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Morante R; Newton R (1998) The Permo-Triassic transition in Spitsbergen: d12Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils. <i>Geological Magazine</i>, <b>135</b> , pp. 47-62.
Wignall PB; Myers KJ (1988) Interpreting benthic oxygen levels in mudrocks: A new approach. <i>Geology</i>, <b>16</b> (5), pp. 452-452. <a href="http://dx.doi.org/10.1130/0091-7613(1988)016<0452:IBOLIM>2.3.CO;2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Newton R (2004) Comment - Contrasting deepwater records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: Evidence for a diachronous mass extinction (Wignall and Newton, 2003) - Reply. <i>PALAIOS</i>, <b>19</b> (1), pp. 102-104. <a href="http://eprints.whiterose.ac.uk/477/"><img src="//environment.leeds.ac.uk/site/images/whiterose.png"></a>
WIGNALL PB; NEWTON R (2004) Reply. <i>PALAIOS</i>, <b>19</b> (1), pp. 102-104. <a href="http://dx.doi.org/10.1669/0883-1351(2004)019<0102:R>2.0.CO;2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Newton R (2001) Black shales on the basin margin: a model based on examples from the Upper Jurassic of the Boulonnais, northern France. <i>SEDIMENT GEOL</i>, <b>144</b> (3-4), pp. 335-356.
Wignall PB; Newton R (1998) Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. <i>American Journal of Science</i>, <b>298</b> , pp. 537-552.
Wignall PB; Newton R (2003) Contrasting deep-water records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: Evidence for a diachronous mass extinction. <i>PALAIOS</i>, <b>18</b> (2), pp. 153-167.
Wignall PB; Newton R; Brookfield ME (2005) Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. <i>PALAEOGEOGR PALAEOCL</i>, <b>216</b> (3-4), pp. 183-188. <a href="http://dx.doi.org/10.1016/j.palaeo.2004.10.009"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Newton RJ (2004) Reply to comment by Retallack: Contrasting Deep-water Records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: Evidence for a Diachronous Mass Extinction. <i>Palaios</i>, <b>19</b> (1), pp. 102-104.
Wignall PB; Newton RJ; Little CTS (2005) The timing of paleoenvironmental change and cause-and-effect relationships during the early Jurassic mass extinction in Europe. <i>AM J SCI</i>, <b>305</b> (10), pp. 1014-1032.
WIGNALL PB; PICKERING KT (1993) Palaeoecology and sedimentology across a Jurassic fault scarp, NE Scotland. <i>Journal of the Geological Society</i>, <b>150</b> (2), pp. 323-340. <a href="http://dx.doi.org/10.1144/gsjgs.150.2.0323"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Racki G (2009) Comment on "Mantle plume: The invisible serial killer - Application to the Permian-Triassic boundary mass extinction", by E. Heydari, N. Arzani and J. Hassanzadeh [Palaeogeography, Palaeoclimatology, Palaeoecology 264 (2008) 147-162]. <i>PALAEOGEOGR PALAEOCL</i>, <b>283</b> (1-2), pp. 99-101. <a href="http://dx.doi.org/10.1016/j.palaeo.2009.02.031"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Rampino MR (1999) Evidence for abrupt latest Permian mass extinction of foraminifera: Results of tests for the Signor-Lipps effect: Comment and Reply. <i>Geology</i>, <b>27</b> (4), pp. 383-383. <a href="http://dx.doi.org/10.1130/0091-7613(1999)027<0383:EFALPM>2.3.CO;2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
WIGNALL PB; RUFFELL AH (1990) The influence of a sudden climatic change on marine deposition in the Kimmeridgian of northwest Europe. <i>Journal of the Geological Society</i>, <b>147</b> (2), pp. 365-371. <a href="http://dx.doi.org/10.1144/gsjgs.147.2.0365"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Simms MJ (1990) Pseudoplankton. <i>Palaeontology</i>, <b>33</b> (2), pp. 359-378.
Wignall PB; Sun YD; Bond DPG; Izon G; Newton RJ; Vedrine S; Widdowson M; Ali JR; Lai XL; Jiang HS (2009) Volcanism, Mass Extinction, and Carbon Isotope Fluctuations in the Middle Permian of China. <i>SCIENCE</i>, <b>324</b> (5931), pp. 1179-1182. <a href="http://dx.doi.org/10.1126/science.1171956"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Sutcliffe OE; Clemson J; Young E (1996) Unusual shoreface sedimentology in the Late Jurassic of the Boulonnais, northern France. <i>Journal of Sedimentary Research. Section A: Sedimentary Petrology and Processes</i>, <b>66</b> , pp. 577-586.
Wignall PB; Thomas B; willink R; watling J (2004) Is Bedout an impact crater?. <i>Science</i>, <b>306</b> (5696), pp. pp.609. <a href="http://dx.doi.org/10.1126/science.306.5696.609d"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Twitchett RJ (1999) Unusual intraclastic limestones in Lower Triassic carbonates and their bearing on the aftermath of the end-Permian mass extinction. <i>Sedimentology</i>, <b>46</b> , pp. 303-316.
Wignall PB; Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. <i>Science</i>, <b>272</b> , pp. 1155-1158.
Wignall PB; Twitchett RJ (2002) Permian-Triassic sedimentology of Jameson Land, East Greenland: Incised submarine channels in an anoxic basin. <i>Journal of the Geological Society</i>, <b>159</b> (6), pp. 691-703. <a href="http://dx.doi.org/10.1144/0016-764900-120"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Twitchett RJ (2002) Permian-Triassic sedimentology of Jameson Land, East Greenland: incised submarine channels in an anoxic basin. <i>J GEOL SOC LONDON</i>, <b>159</b> , pp. 691-703.
Wignall PB; Vedrine S; Bond DPG; Wang W; Lai XL; Ali JR; Jiang HS (2009) Facies analysis and sea-level change at the Guadalupian-Lopingian Global Stratotype (Laibin, South China), and its bearing on the end-Guadalupian mass extinction. <i>J GEOL SOC LONDON</i>, <b>166</b> , pp. 655-666. <a href="http://dx.doi.org/10.1144/0016-76492008-118"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Woods A; Bottjer D (2005) Comment on "Permian–Triassic boundary interval in the Abadeh section of Iran with implications for mass extinction: Part 1. Sedimentology" by E. Heydari, J. Hassanzadeh, W.J. Wade and A.M. Ghazi. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>217</b> (3-4), pp. 315-317. <a href="http://dx.doi.org/10.1016/j.palaeo.2004.11.022"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Zonneveld JP; Newton RJ; Amor K; Sephton MA; Hartley S (2007) The end Triassic mass extinction record of Williston Lake, British Columbia. <i>PALAEOGEOGR PALAEOCL</i>, <b>253</b> (3-4), pp. 385-406. <a href="http://dx.doi.org/10.1016/j.palaeo.2007.06.020"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Wignall PB; Zonneveld JP; Sephton MA (2003) Carbon and nitrogen isotope disturbances and an end-Norian (Late Triassic) extinction event: Reply. <i>Geology</i>, <b>31</b> (1). <a href="http://dx.doi.org/10.1130/0091-7613-31.1.e25"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Williams M; Haywood AM; Harper EM; Johnson ALA; Knowles T; Leng MJ; Lunt DJ; Okamura B; Taylor PD; Zalasiewicz J (2009) Pliocene climate and seasonality in North Atlantic shelf seas. <i>PHILOS T R SOC A</i>, <b>367</b> (1886), pp. 85-108. <a href="http://dx.doi.org/10.1098/rsta.2008.0224"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Williams M; Haywood AM; Hillenbrand CD; Wilkinson IP (2005) Efficacy of delta18O data from Pliocene planktonic foraminifer calcite for spatial sea surface temperature reconstruction: comparison with a fully coupled ocean-atmosphere GCM and fossil assemblage data for the mid-Pliocene. <i>Geological Magazine</i>, <b>142</b> (4), pp. 399-417. <a href="http://dx.doi.org/10.1017/S0016756805000828"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Williams M; Haywood AM; Taylor SP; Valdes PJ; Sellwood BW; Hillenbrand CD (2005) Evaluating the efficacy of planktonic foraminifer calcite δ<sup>18</sup>O data for sea surface temperature reconstruction for the Late Miocene. <i>Geobios</i>, <b>38</b> (6), pp. 843-863. <a href="http://dx.doi.org/10.1016/j.geobios.2004.12.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Williams M; Haywood AM; Taylor SP; Valdes PJ; Sellwood BW; Hillenbrand CD (2005) Evaluating the efficacy of planktonic foraminifer calcite delta18O data for sea surface temperature reconstruction for the Late Miocene. <i>Geobios</i>, <b>38</b> (6), pp. 843-863. <a href="http://dx.doi.org/10.1016/j.geobios.2004.12.001"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Williams M; Haywood AM; Vautravers M; Sellwood BW; Hillenbrand CD; Wilkinson IP; Miller CG (2007) Relative effect of taphonomy on calcification temperature estimates from fossil planktonic foraminifera. <i>GEOBIOS-LYON</i>, <b>40</b> (6), pp. 861-874. <a href="http://dx.doi.org/10.1016/j.geobios.2007.02.007"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Williams M; Nelson AE; Smellie JL; Leng MJ; Johnson ALA; Jarram DR; Haywood AM; Peck VL; Zalasiewicz J; Bennett C (2010) Sea ice extent and seasonality for the Early Pliocene northern Weddell Sea. <i>PALAEOGEOGR PALAEOCL</i>, <b>292</b> (1-2), pp. 306-318. <a href="http://dx.doi.org/10.1016/j.palaeo.2010.04.003"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Woodcock P; Edwards DP; Fayle TM; Newton RJ; Khen CV; Bottrell SH; Hamer KC (2011) The conservation value of South East Asia's highly degraded forests: evidence from leaf-litter ants. <i>Philos Trans R Soc Lond B Biol Sci</i>, <b>366</b> (1582), pp. 3256-3264. <a href="http://dx.doi.org/10.1098/rstb.2011.0031"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Woodcock P; Edwards DP; Newton RJ; Edwards FA; Khen CV; Bottrell SH; Hamer KC (2012) Assessing trophic position from nitrogen isotope ratios: effective calibration against spatially varying baselines. <i>Naturwissenschaften</i>, <b>99</b> (4), pp. 275-283. <a href="http://dx.doi.org/10.1007/s00114-012-0896-2"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Xie SC; Pancost RD; Huang JH; Wignall PB; Yu JX; Tang XY; Chen L; Huang XY; Lai XL (2007) Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis. <i>GEOLOGY</i>, <b>35</b> (12), pp. 1083-1086. <a href="http://dx.doi.org/10.1130/G24224A.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Xie SC; Pancost RD; Wang YB; Yang H; Wignall PB; Luo GM; Jia CL; Chen L (2010) Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis. <i>GEOLOGY</i>, <b>38</b> (5), pp. 447-450. <a href="http://dx.doi.org/10.1130/G30769.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Xie SC; Pancost RD; Wang YB; Yang H; Wignall PB; Luo GM; Jia CL; Chen L (2011) Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis Reply. <i>GEOLOGY</i>, <b>39</b> (9), pp. E249-E249. <a href="http://dx.doi.org/10.1130/G32293Y.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Yang B; Lai X; Wignall PB; Jiang H; Yan C; Sun Y (2012) A newly discovered earliest Triassic chert at Gaimao section, Guizhou, southwestern China. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>, <b>344-345</b> , pp. 69-77. <a href="http://dx.doi.org/10.1016/j.palaeo.2012.05.019"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Zalasiewicz J; Williams M; Haywood A; Ellis M (2011) The anthropocene: A new epoch of geological time?. <i>Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences</i>, <b>369</b> (1938), pp. 835-841.
Zalasiewicz J; Williams W; Haywood AM; Ellis M (2011) The Anthropocene: a new epoch of geological time?. <i>Philosophical Transactions of the Royal Society of London</i>, <b>Series A</b> (369), pp. 835-841. <a href="http://dx.doi.org/10.1098/rsta.2010.0339"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Zaton M; Marynowski L; Szczepanik P; Bond DPG; Wignall PB (2009) Redox conditions during sedimentation of the Middle Jurassic (Upper Bajocian-Bathonian) clays of the Polish Jura (south-central Poland). <i>FACIES</i>, <b>55</b> (1), pp. 103-114. <a href="http://dx.doi.org/10.1007/s10347-008-0159-z"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Zegeye A; Bonneville S; Benning LG; Sturm A; Fowle DA; Jones C; Canfield DE; Ruby C; MacLean LC; Nomosatryo S (2012) Green rust formation controls nutrient availability in a ferruginous water column. <i>Geology</i>, <b>40</b> (7), pp. 599-602. <a href="http://dx.doi.org/10.1130/G32959.1"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Zerkle AL; Claire MW; Domagal-Goldman SD; Farquhar J; Poulton SW (2012) A bistable organic-rich atmosphere on the Neoarchaean Earth. <i>Nature Geoscience</i>, <b>5</b> (5), pp. 359-363. <a href="http://dx.doi.org/10.1038/ngeo1425"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Zhou L; Su J; Feng Q; Zhao L; Huang J; Wignall PB; Xie S (2012) U/Mo ratios and δ Mo as local and global redox proxies during mass extinction events. <i>Chemical Geology</i>, . <a href="http://dx.doi.org/10.1016/j.chemgeo.2012.03.020"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Zhou L; Wignall PB; Su J; Feng Q; Xie S; Zhao L; Huang J (2012) U/Mo ratios and δ98/95Mo as local and global redox proxies during mass extinction events. <i>Chemical Geology</i>, <b>324-325</b> , pp. 18-39. <a href="http://dx.doi.org/10.1016/j.chemgeo.2012.03.020"><img src="//environment.leeds.ac.uk/site/images/doi.png"></a>
Barlow N; Shennan I (2008) <i>An Overview of Holocene Coastal Change From Berwick-upon-Tweed to Whitby</i> North East Rapid Coastal Zone Assessment (NERCZA), p. 19-41.
Barlow N; Shennan I (2009) <i>An Overview of Holocene Coastal Change in North West England</i> North West Rapid Coastal Zone Assessment, p. 24-49.
Hill DJ; Haywood AM; Lunt DJ; Otto-Bliesner BL; Harrison SP; Braconnot P (2012) <i>Paleoclimate modeling: an integrated component of climate change science</i> PAGES Newsletter, p. 103.
Lacy C; Harwood D; Levy R; Haywood AM (2002) <i>Future of Antarctic Margin Drilling: developing a science plan for McMurdo Sound</i> ANDRILL Contribution.
Shennan I; Long A; Barlow N (2007) <i>Recurrent Holocene paleoseismicity and associated land/sea-Level changes in south central Alaska</i> USGS National Earthquake Hazards Reduction Program (NEHRP) report.
Shennan I; Long A; Barlow N; Watcham E (2011) <i>Spatial and Temporal Patterns of Deformation Associated with Multiple Late Holocene Earthquakes in Kodiak Island, Alaska</i> USGS National Earthquake Hazards Reduction Program (NEHRP) report.
Shennan I; Long A; Barlow N; Watcham E (2010) <i>Spatial and temporal patterns of deformation associated with multiple late Holocene earthquakes in Alaska</i> USGS National Earthquake Hazards Reduction Program (NEHRP) report.

No publications to show.